
Lecture 8: Denoising diffusion probabilistic models and normalizing flows

Lecture 8: Denoising diffusion probabilistic models and
normalizing flows

2025–06–18

1.1 Denoising diffusion probabilistic models
The content of this section is largely based on the work [2].

1.1.1 Basic
We denote by N (x;µ,Σ) the density of the Gaussian random variable with mean
µ ∈ Rd and covariance matrix Σ ∈ Rd×d. Precisely,

N (x;µ,Σ) = (2π)−
d
2 (detΣ)−

1
2 e−

1
2 (x−µ)⊤Σ−1(x−µ) , x ∈ Rd . (1.1)

Let π be a probability density on Rd and f : R → R be a convex function.
Recall the Jensen’s inequality

f
(
Eπ(g(x))

)
= f

(∫
Rd

g(x)π(x)dx
)
≤ Eπ

(
f(g(x))

)
, (1.2)

which holds for any function g : Rd → R.
Let us also recall the Kullback-Leibler (KL) divergence (or relative en-

tropy).

Definition 1. Let Q1 and Q2 be two probability densities on the same
measure space, where Q1 is absolutely continuous with respect to Q2. The
KL divergence from Q2 to Q1 is defined as

DKL(Q1 |Q2) := EQ1

(
log

Q1

Q2

)
. (1.3)

Note that, in general, KL divergence is not symmetric, that is, DKL(Q1 |Q2)
and DKL(Q2 |Q1) are not equal. Moreover, Jensen’s inequality implies that
DKL(Q1 |Q2) ≥ 0 and it equals zero if and only if the two densities Q1 and Q2

are identical.

1.1.2 Theoretical background
Assume that the data distribution is q0(x)dx on Rd. Denoising diffusion prob-
abilistic models (DDPMs) are a class of generative models built on Markov
chains. Specifically, given data x(0) ∈ Rd, states x(1), . . . , x(N) ∈ Rd are gener-
ated by evolving a Markov chain, which is called the forward process. The joint
probability density of x(1), . . . , x(N) given x(0) is

q(x(1:N) |x(0)) =

N∏
k=1

q(x(k) |x(k−1)) , (1.4)

where q(x(k) |x(k−1)) is the transition density of the forward process, chosen as
(Gaussian density)

q(x(k) |x(k−1)) = N (x(k);
√
1− βkx

(k−1), βkId) , (1.5)

1

Lecture 8: Denoising diffusion probabilistic models and normalizing flows

and βk > 0 is a constant.
The generative process, also called the reverse process, is a Markov chain on

Rd that is learnt to reproduce the data by reversing the forward process. Its
joint probability density is

pθ(x
(0:N)) = p(x(N))

N∏
k=1

pθ(x
(k−1) |x(k)) , (1.6)

where p(x(N)) is a (fixed) prior density, θ is the parameter to be learnt, and
pθ(x

(k−1) |x(k)) is the transition density of the reverse process, chosen as

pθ(x
(k−1) |x(k)) = N

(
x(k−1);µθ(x

(k), k),Σθ(x
(k), k)

)
. (1.7)

The probability density of x(0) generated by the reverse process is there-
fore pθ(x

(0)) =
∫
pθ(x

(0:N)) dx(1:N). The learning objective is based on the
standard variational bound on the negative log-likelihood. Specifically, us-
ing (1.4) and (1.6), and applying Jensen’s inequality (for the convex function
f(x) = − log(x)), we can derive

Eq0

(
− log pθ(x

(0))
)
=Eq0

[
− log

(∫
pθ(x

(0:N)) dx(1:N)
)]

=Eq0

[
− log

(∫
pθ(x

(0:N))

q(x(1:N) |x(0))
q(x(1:N) |x(0)) dx(1:N)

)]
≤Eq0

[∫
− log

(pθ(x
(0:N))

q(x(1:N) |x(0))

)
q(x(1:N) |x(0)) dx(1:N)

]
=EQ

(
− log

pθ(x
(0:N))

q(x(1:N) |x(0))

)
=EQ

(
− log p(x(N))−

N∑
k=1

log
pθ(x

(k−1) |x(k))

q(x(k) |x(k−1))

)
=: L ,

(1.8)
where Eq0 ,EQ denote the expectation with respect to the data distribution and
the expectation with respect to the joint density q(x(0:N)) under the forward
process, respectively.

We can learn the parameter θ by minimizing the upper bound L in the last
line of (1.8). However, as we see below, we can obtain a simplified objective
function based on analyzing the upper bound L.

First, since each step of the forward process follows the Gaussian distribution
in (1.5), the state x(k) of the forward process at any step k given x(0) also follows
a Gaussian distribution, whose density is provided by the following result.

Lemma 1. Let x(k) be the forward process with transition density in (1.5).
Then, we have

q(x(k)|x(0)) = N (x(k);
√
ᾱkx

(0), (1− ᾱk)Id) , (1.9)

2

Lecture 8: Denoising diffusion probabilistic models and normalizing flows

where

αk = 1− βk , and ᾱk =

k∏
i=1

αi . (1.10)

Proof. We prove (1.9) by induction. When k = 1, from (1.10) we have
ᾱk = α1 = 1 − β1. Therefore, (1.9) holds since it coincides with (1.5).
Now, consider k > 1 and assume that (1.9) holds for k− 1. Then, we have

x(k−1) =
√
ᾱk−1x

(0) +
√
1− ᾱk−1r

(k−1) , r(k−1) ∼ N (0, Id) .

Similarly, from (1.5), we have

x(k) =
√
1− βkx

(k−1) +
√
βkr̃

(k−1) , r̃(k−1) ∼ N (0, Id) .

Combining the two identities above, we obtain

x(k) =
√
1− βk

(√
ᾱk−1x

(0) +
√
1− ᾱk−1r

(k−1)
)
+

√
βkr̃

(k−1)

=
√
(1− βk)ᾱk−1x

(0) +
√

(1− βk)(1− ᾱk−1)r
(k−1) +

√
βkr̃

(k−1) ,

which clearly shows that, given x(0), x(k) is Gaussian. Calculating its
mean and covariance and also using the fact that r(k−1) and r̃(k−1) are
independent standard Gaussian random variables, we have

E(x(k)|x(0)) =
√
(1− βk)ᾱk−1x

(0) =
√
ᾱkx

(0) ,

and E
((

x(k) −
√
ᾱkx

(0)
)(
x(k) −

√
ᾱkx

(0)
)⊤∣∣∣x(0)

)
=
(
(1− βk)(1− ᾱk−1) + βk

)
Id

=(1− ᾱk)Id ,

where we have used (1.10). This shows that (1.9) holds for k.

Second, we can rewrite the variational upper bound L as follows.

Proposition 1. We have

L = LN +

N∑
k=2

Lk−1 + L0 , (1.11)

where

L0 =− EQ

(
log pθ(x

(0)|x(1))
)
,

Lk−1 =EQ

[
DKL

(
q
(
x(k−1) |x(k), x(0)

) ∣∣∣ pθ(x(k−1) |x(k)
))]

, k = 2, . . . , N ,

LN =EQ

[
DKL

(
q
(
x(N)|x(0)

) ∣∣∣ p(x(N))
)]

.

(1.12)

3

Lecture 8: Denoising diffusion probabilistic models and normalizing flows

Proof. For k > 1, we have the following identity

q(x(k) |x(k−1)) q(x(k−1)|x(0)) = q(x(k−1) |x(k), x(0)) q(x(k)|x(0)) , (1.13)

from which we obtain

q(x(k) |x(k−1)) = q(x(k−1) |x(k), x(0))
q(x(k)|x(0))

q(x(k−1)|x(0))
. (1.14)

Substituting (1.14) into the expression of L in (1.8) and using the definition
of KL divergence in Definition 1, we can derive

L =EQ

(
− log p(x(N))−

N∑
k=1

log
pθ(x

(k−1) |x(k))

q(x(k) |x(k−1))

)
=EQ

(
log

q(x(N)|x(0))

p(x(N))
+

N∑
k=2

log
q(x(k−1) |x(k), x(0))

pθ(x(k−1) |x(k))
− log pθ(x

(0)|x(1))
)

=EQ

[
DKL

(
q(x(N)|x(0))

∣∣∣ p(x(N))
)

+

N∑
k=2

DKL

(
q(x(k−1) |x(k), x(0))

∣∣∣ pθ(x(k−1) |x(k))
)

− log pθ(x
(0)|x(1))

]
,

which implies (1.11) and (1.12).

In (1.11), the term LN is independent of θ, while the conditional density
q(x(k−1)|x(k), x(0)) in Lk−1 is Gaussian with explicit expression given by the
following result.

Lemma 2. Let x(k) be the forward process with transition density in (1.5).
Then, we have

q(x(k−1)|x(k), x(0)) = N (x(k−1); µ̃k(x
(k), x(0)), β̃kId) , (1.15)

where

µ̃k(x
(k), x(0)) =

√
ᾱk−1βk

1− ᾱk
x(0) +

√
αk(1− ᾱk−1)

1− ᾱk
x(k) ,

β̃k =
1− ᾱk−1

1− ᾱk
βk .

(1.16)

4

Lecture 8: Denoising diffusion probabilistic models and normalizing flows

Proof. Using (1.13), (1.5), and Lemma 1, we can derive

q(x(k−1) |x(k), x(0))

=q(x(k) |x(k−1))
q(x(k−1)|x(0))

q(x(k)|x(0))

=N
(
x(k);

√
1− βkx

(k−1), βkId
) N (

x(k−1);
√
ᾱk−1x

(0), (1− ᾱk−1)Id
)

N
(
x(k);

√
ᾱkx(0), (1− ᾱk)Id

)
=C exp

(
− |x(k) −

√
1− βkx

(k−1)|2

2βk

)
· exp

(
− |x(k−1) −√

ᾱk−1x
(0)|2

2(1− ᾱk−1)

)
· exp

(|x(k) −
√
ᾱkx

(0)|2

2(1− ᾱk)

)
,

(1.17)
where C is a normalizing constant independent of x(0), x(k−1), and x(k).

We obtain (1.15) by completing the square in the last line of (1.17) and
using the relations in (1.10).

1.1.3 Practical choices
We discuss the choices for the density pθ(x

(k−1) |x(k)) in (1.7) of the reverse
process. For the covariance matrix, we choose

Σθ(x
(k), k) = σ2

kId , where σ2
k = βk or σ2

k = β̃k =
1− ᾱk−1

1− ᾱk
βk. (1.18)

For the parametrization of the mean µθ(x
(k), k), we are motivated by the

following result on the term Lk−1 in (1.12).

Lemma 3. Assume that

pθ(x
(k−1) |x(k)) = N

(
x(k−1);µθ(x

(k), k), σ2
kId

)
. (1.19)

Then, the term Lk−1 in (1.12), where 2 ≤ k ≤ N , can be written as

Lk−1 =
1

2σ2
k

EQ

(∣∣µθ(x
(k), k)− µ̃k(x

(k), x(0))
∣∣2)+ C , (1.20)

where C is a constant independent of θ and µ̃k is defined in (1.16).

Proof. Let us denote by C a generic constant that is independent of θ.
From (1.12) and Definition 1, we have

Lk−1 =EQ

[
DKL

(
q(x(k−1) |x(k), x(0))

∣∣∣ pθ(x(k−1) |x(k))
)]

=EQ

[
Ex(k−1)∼q(x(k−1) | x(k),x(0))

(
log

q(x(k−1) |x(k), x(0))

pθ(x(k−1) |x(k))

)]
=− EQ

[
Ex(k−1)∼q(x(k−1) | x(k),x(0))

(
log pθ(x

(k−1) |x(k))
)]

+ C .

Using (1.19) and the fact that the mean of x(k−1) ∼ q(x(k−1) |x(k), x(0)) is

5

Lecture 8: Denoising diffusion probabilistic models and normalizing flows

µ̃k(x
(k), x(0)) (see (1.16)), we can derive

Lk−1 =
1

2σ2
k

EQ

[
Ex(k−1)∼q(x(k−1) | x(k),x(0))

(∣∣x(k−1) − µθ(x
(k), k)

∣∣2)]+ C

=
1

2σ2
k

EQ

[
Ex(k−1)∼q(x(k−1) | x(k),x(0))

(∣∣µθ(x
(k), k)

∣∣2 − 2x(k−1) · µθ(x
(k), k)

)]
+ C

=
1

2σ2
k

EQ

(∣∣µθ(x
(k), k)

∣∣2 − 2µ̃k(x
(k), x(0)) · µθ(x

(k), k)
)
+ C

=
1

2σ2
k

EQ

(∣∣µθ(x
(k), k)− µ̃k(x

(k), x(0))
∣∣2)+ C ,

which gives (1.20).

The expression (1.20) suggests that µθ(x
(k), k) should predict µ̃k. Note that

(1.9) implies the parametrization

x(k)(x(0), ε) =
√
ᾱkx

(0) +
√
1− ᾱkε , where ε ∼ N (0, Id) . (1.21)

With this, as well as the expression of µ̃k in (1.16), we can further write (1.20)
as

Lk−1 − C

=Ex(0),ε

[1

2σ2
k

∣∣∣µθ

(
x(k)(x(0), ε), k

)
− µ̃k

(
x(k)(x(0), ε),

1√
ᾱk

(
x(k)(x(0), ε)−

√
1− ᾱkε

))∣∣∣2]
=Ex(0),ε

[1

2σ2
k

∣∣∣µθ

(
x(k)(x(0), ε), k

)
− 1

√
αk

(
x(k)(x(0), ε)− βk√

1− ᾱk
ε
)∣∣∣2] .

(1.22)
Equation (1.22) suggests that µθ(x

(k), k) must predict 1√
αk

(
x(k) − βk√

1−ᾱk
ε
)
,

given x(k). Therefore, we choose the parametrization

µθ(x
(k), k) =

1
√
αk

(
x(k) − βk√

1− ᾱk
εθ(x

(k), k)
)
, (1.23)

where εθ is a function that predicts ε from x(k). Sampling x(k−1) ∼ pθ(x
(k−1)|x(k))

can be achieved by

x(k−1) =
1

√
αk

(
x(k) − βk√

1− ᾱk
εθ(x

(k), k)
)
+ σkz , where z ∼ N (0, Id) . (1.24)

Furthermore, with (1.21) and (1.23), equation (1.22) simplifies to

Lk−1 − C

=Ex(0),ε

[β2
k

2σ2
kαk(1− ᾱk)

∣∣εθ(√ᾱkx
(0) +

√
1− ᾱkε, k)− ε

∣∣2] . (1.25)

Empirically, we drop the factor in the expression (1.25) of Lk−1 and use (instead
of L) the simplified loss function

Lsimple(θ) = Ek,x(0),ε

[∣∣εθ(√ᾱkx
(0) +

√
1− ᾱkε, k)− ε

∣∣2] . (1.26)

The training and sampling algorithms are summarized in Algorithms 1-2.

6

Lecture 8: Denoising diffusion probabilistic models and normalizing flows

Algorithm 1 Training
1: repeat
2: x(0) ∼ q0(x

(0))
3: k ∼ Uniform({1, 2, . . . , N})
4: ε ∼ N (0, Id).
5: take gradient descent step on
6: ∇θ

∣∣εθ(√ᾱkx
(0) +

√
1− ᾱkε, k)− ε

∣∣2
7: until converged

Algorithm 2 Sampling

1: x(N) ∼ N (0, Id)
2: for k = N, . . . , 1 do
3: z ∼ N (0, Id) if k > 1, else z = 0

4: x(k−1) = 1√
αk

(
x(k) − βk√

1−ᾱk
εθ(x

(k), k)
)
+ σkz

5: end for
6: return x(0)

1.2 Normalizing flows
The content of this section is based on the references [3, 1].

1.2.1 Basic
The idea of normalizing flows is to express data x ∈ Rd as a transformation of
z of the same dimension that follows a simpler distribution pz(z).

Let us first recall the change of variables formula. Assume that z ∈ Rd

is a random variable with probability density pz(z) and f : Rd → Rd is a
transformation that is both invertible and differentiable. Denote by px the
probability density of x = f(z), i.e. the image of z under f . Then, we have the
change of variables formula

px(x) = pz(z)|det Jf (z)|−1, (1.27)

where z = f−1(x) and the Jacobian Jf (z) is the d× d matrix defined as

Jf (z) =


∂f1
∂z1

· · · ∂f1
∂zd

...
...

∂fd
∂z1

· · · ∂fd
∂zd

 . (1.28)

Equivalently, (1.27) can be expressed in terms of Jacobian of f−1 as

px(x) = pz(f
−1(x))|det Jf−1(x)| . (1.29)

Assume that f1, f2 are two transformations that are both invertible and
differentiable. Then, their composition f2◦f1 is also invertible and differentiable.
Moreover, we have

(f2 ◦ f1)−1 =f−1
1 ◦ f−1

2

det Jf2◦f1(z) =det Jf2(f1(z)) · det Jf1(z) .
(1.30)

7

Lecture 8: Denoising diffusion probabilistic models and normalizing flows

In practice, pz is often chosen as a normal distribution and the trans-
formation f is constructed as the composition of elementary transformations
f1, f2, · · · , fK . The term “normalizing” refers to the fact that the data distri-
bution of x becomes normal distribution under the transformation f−1, while
“flow” refers to the passing of data through the transformations f1, f2, · · · , fK .

1.2.2 Generative modeling with normalizing flows
Given the target density p∗x(x), we want to learn a transformation f(·; θ) with
parameters θ, such that the density of x = f(z; θ), denoted by px(x; θ), is close
to p∗x(x). We use the (forward) KL divergence in Definition 1 to quantify the
closeness between px(x; θ) and p∗x(x):

DKL

(
p∗x(x) | px(x; θ)

)
=Ex∼p∗

x(x)

(
log

p∗x(x)

px(x; θ)

)
=− Ex∼p∗

x(x)
(log px(x; θ)) + C

=− Ex∼p∗
x(x)

[
log pz(f

−1(x; θ)) + log |det Jf−1(x; θ)|
]
+ C .

where C is a constant independent of θ and the last equality follows from (1.29).
In practice, the transformation f is modeled by a neural network that is trained
with the loss function

Loss(θ) = − 1

N

N∑
n=1

[
log pz(f

−1(xn; θ)) + log |det Jf−1(xn; θ)|
]
. (1.31)

In order for (1.31) to be computable, the neural network architecture has to
be designed such that

1. the input and output dimensions are the same;

2. f is invertible;

3. computing f−1 and its Jacobian determinant is efficient.

1.2.3 Normalizing flow models
As mentioned in the previous section, we can design the model f as the composi-
tion of building blocks f1, f2, · · · , fK . Assume that each fk satisfies the require-
ment at the end of the previous section, then their composition f = fK ◦ · · · ◦f1
is invertible and the logarithmic of its Jacobian determinant can be computed
as

log |det Jf−1(x)| = log
∣∣∣ K∏
k=1

det Jf−1
k

(zk)
∣∣∣ = K∑

k=1

log |det Jf−1
k

(zk)| , (1.32)

where zK = x and
zk−1 = f−1

k (zk), k = K, . . . , 1 . (1.33)

In the following, we briefly mention two types of building blocks, which are
called Nonlinear Independent Components Estimation (NICE) model and Real
Non-Volume Preserving (RealNVP) model.

8

Lecture 8: Denoising diffusion probabilistic models and normalizing flows

1. NICE. The transformation x = (x1, x2) = f(z) is defined as

x1 =z1 ,

x2 =z2 + µθ(z1) ,
(1.34)

where z1 ∈ Rd′
and z2 ∈ Rd−d′

are two disjoint subsets that form a
partitions of z, d′ is an integer between 1 and d− 1, and µθ : Rd′ → Rd−d′

is a neural network. Its inverse is

z1 =x1 ,

z2 =x2 − µθ(x1) .
(1.35)

It is straightforward to verify that the Jacobian determinant of f is one.
Therefore, f defines a volume preserving transformation.

2. RealNVP. The transformation x = (x1, x2) = f(z) is defined as

x1 =z1 ,

x2 =exp(σθ(z1))⊙ z2 + µθ(z1) ,
(1.36)

where ⊙ denotes elementwise product, and σθ, µθ : Rd′ → Rd−d′
are two

neural networks. The inverse of f is

z1 =x1 ,

z2 =exp(−σθ(x1))⊙ (x2 − µθ(x1)) ,
(1.37)

The Jacobian determinant is det Jf−1(x) = exp(−
∑d−d′

j=1 (σθ(x1))j), where
(σθ(x1))j denotes the jth component of σθ(x1).

9

Bibliography

[1] L. Dinh, J. Sohl-Dickstein, and S. Bengio. Density estimation using real
NVP. In International Conference on Learning Representations, 2017.

[2] J. Ho, A. Jain, and P. Abbeel. Denoising diffusion probabilistic models.
In Advances in Neural Information Processing Systems, volume 33, pages
6840–6851, 2020.

[3] G. Papamakarios, E. Nalisnick, D. J. Rezende, S. Mohamed, and B. Laksh-
minarayanan. Normalizing flows for probabilistic modeling and inference. J.
Mach. Learn. Res., 22(1), 2021.

10

