Lecture 8: Denoising diffusion probabilistic models and normalizing flows

Lecture 8: Denoising diffusion probabilistic models and

normalizing flows
2025-06-18

1.1 Denoising diffusion probabilistic models

The content of this section is largely based on the work [2].

1.1.1 Basic

We denote by N (x; u, X) the density of the Gaussian random variable with mean
u € R% and covariance matrix ¥ € R**?. Precisely,

N(z;p,) = (271')_%(det 2)_%6_%@_#)72*1(1_@ , xcRe (1.1)

Let m be a probability density on R? and f : R — R be a convex function.
Recall the Jensen’s inequality

F(Entala)) = £([s@r@)dr) < B (f(g(a)). (12)

which holds for any function g : R — R.
Let us also recall the Kullback-Leibler (KL) divergence (or relative en-

tropy).

Definition 1. Let @7 and @2 be two probability densities on the same
measure space, where ()1 is absolutely continuous with respect to Q2. The
KL divergence from Q)5 to @); is defined as

Dxr(Q1]Q2) = Eo, <log %) . (1.3)

Note that, in general, KL divergence is not symmetric, that is, Dg,(Q1 | Q2)
and Dk (Q2]Q1) are not equal. Moreover, Jensen’s inequality implies that
Dkr(Q1|Q2) > 0 and it equals zero if and only if the two densities @1 and Q2
are identical.

1.1.2 Theoretical background

Assume that the data distribution is go(z)dz on R?. Denoising diffusion prob-
abilistic models (DDPMSs) are a class of generative models built on Markov
chains. Specifically, given data z(9) € R¢, states (), ..., z(N) € R? are gener-
ated by evolving a Markov chain, which is called the forward process. The joint
probability density of (), ..., () given z(9) is

N
a(zN) | 2©) = H q(z®) | 21 | (1.4)
k=1

where g(z*®) | £(*=1)) is the transition density of the forward process, chosen as
(Gaussian density)

q(@® | 2Dy = N(2®); /1 = Bra®V, Bily) (1.5)

Lecture 8: Denoising diffusion probabilistic models and normalizing flows

and f > 0 is a constant.

The generative process, also called the reverse process, is a Markov chain on
R? that is learnt to reproduce the data by reversing the forward process. Its
joint probability density is

N
po(z) H (e 2™, (1.6)

where p(z(N)) is a (fixed) prior density, 6 is the parameter to be learnt, and
po(z#=1 | £(*)) is the transition density of the reverse process, chosen as

po(a® V) |2y = N(l’(’“’”;ua(x(’“), k), Sg(x™), k)) : (1.7)

The probability density of (%) generated by the reverse process is there-
fore pg(z(?) = [pg(z®N))dz(:N). The learning objective is based on the
standard variational bound on the negative log-likelihood. Specifically, us-
ing (1.4) and (1.6), and applying Jensen’s inequality (for the convex function
f(x) = —log(x)), we can derive

qo(- Inge(x(O))) =Eq4, - log (/pg(x(O:N)) dx(lzN))}
_ [Pe(x(O:N)) (1:N) | .(0) (1:N)
=Eq, |~ log (/ mq(x |2\%) dx)}

I po(xN) (1:N) | (0)y 4. (1:N)
<Eq _/—log (7(](33(1:1\]) |z(0))>q(m |2'™) dx }

_ pe(x(O:N))
g~ log a(z (1:N)\;,;<0))>

o (x| (k)
:E@(log p(x Zl pa:(’f)|x(k 1)))) =L,
(1.8)
where Ey,, Eg denote the expectation with respect to the data distribution and
the expectation with respect to the joint density q(z(®)) under the forward
process, respectively.

We can learn the parameter # by minimizing the upper bound L in the last
line of (1.8). However, as we see below, we can obtain a simplified objective
function based on analyzing the upper bound L.

First, since each step of the forward process follows the Gaussian distribution
in (1.5), the state z(®) of the forward process at any step k given z(9) also follows
a Gaussian distribution, whose density is provided by the following result.

Lemma 1. Let (*) be the forward process with transition density in (1.5).
Then, we have

gz P ®) = M@ ®; Vae®, (1 - a)la), (1.9)

Lecture 8: Denoising diffusion probabilistic models and normalizing flows

where
k

ap=1— 0, and &kZHai. (1.10)

=1

Proof. We prove (1.9) by induction. When k£ = 1, from (1.10) we have
ar = ay = 1 — B1. Therefore, (1.9) holds since it coincides with (1.5).
Now, consider k > 1 and assume that (1.9) holds for £ — 1. Then, we have

2® D = a2 @ + /T —ap_r® Y, 2*D L A(0,1y).

Similarly, from (1.5), we have

2® = /1= Bz® D 4+ /B#®*=D 7#*=D L A(0,1,).

Combining the two identities above, we obtain

+® =T Be(VarTe® + /T=anr®=) 4 /B
=1 = Br) -1 + /(1 = Bi) (1 — ae—r)r* Y + /B

which clearly shows that, given z(?), () is Gaussian. Calculating its
mean and covariance and also using the fact that r*~1 and #*~1 are
independent standard Gaussian random variables, we have

E(z®z@) = /(1 = Br)ar—12® = Varz®,
and E((x(k) V@) (z® - @x(o))T‘m(o)>
:((1 — Br)(1 — ag—1) + ﬁk)ld
:(1 - O_ék)]:da

where we have used (1.10). This shows that (1.9) holds for k. O

Second, we can rewrite the variational upper bound L as follows.

Proposition 1. We have

N

L:LN—i—ZLk_l—i—LO, (1.11)
k=2

where
Lo = — Eq(logpo(=¥}2M)) ,
Lk:—l :EQ [DKL (q(x(k_l) |x(k)ax(0)) ‘pe(x(k_l) |x(k))):|) k= 27 te 7N7

Ly =Eq [DKL (q(x(N)|$(o)) ‘P(!'E(N)))} :
(1.12)

Lecture 8: Denoising diffusion probabilistic models and normalizing flows

Proof. For k > 1, we have the following identity
a(e® |24-1) gz ®D[p®) = g o, 20) ¢z @), (1.13)

from which we obtain

a(e®2®)

e (1.14)

q(x(k) |m(k71)) — q(x(kfl) |x(k),m(0))

Substituting (1.14) into the expression of L in (1.8) and using the definition
of KL divergence in Definition 1, we can derive

(k=1) | (k)
_ (N Pe |z'™))
L —E@(log p(x) E log x(k))

(N)|x g(z*=D | £(*) 2(0))

E _ (0)]..(1)
+ IOg p .’L’(k 1) ‘.’B(k)> 10gpg($ |I))
=Eg [DKL (q(:zc(N \x(o) ‘p x(N))

+ZDKL((@0 | 28, (o>)‘p9(x<k71>|x<k>)>

=Eq (log

— log po(z® \w(l))} :

which implies (1.11) and (1.12). O

In (1.11), the term Ly is independent of #, while the conditional density
q(z®F=D]z®)) in L, ; is Gaussian with explicit expression given by the
following result.

Lemma 2. Let (®) be the forward process with transition density in (1.5).
Then, we have

q(z(k*1)|x(k), :c(o)) = N(x(kfl); ﬁk(l’(k), 1'(0)), /gkld)) (1.15)
where
fir (™), 2y = 3 ak Bk o 4 0l = @e-1) i)
’ - ay 1= o ’ (1.16)
- 1- ’
Br = Q-1 — Bk
1-— Ozk

Lecture 8: Denoising diffusion probabilistic models and normalizing flows

Proof. Using (1.13), (1.5), and Lemma 1, we can derive

gz | 2B £(0))

(k—=1)] (0
2" |x(k71))Q(m |=)

= PEGIFR)

_ N (z*=D; Var—12®, (1 - ak—1)la)
=N (z®; /1= Bz® Y, Bily) N (@®); /ara©, (1= ax)la)

k) — /1T = (k=1)|2 (k=1) _ /& (0)2
:C’exp(—|x Pr |)~exp(—|x ,akilm |)
285 2(1 — ag-1)
|®) — /Gy @2
S (2(1 — o)) ’

(1.17)

where C' is a normalizing constant independent of z(©), z(*=1) and z(*).
We obtain (1.15) by completing the square in the last line of (1.17) and
using the relations in (1.10). O

1.1.3 Practical choices

We discuss the choices for the density pg(z*~1 |2(®)) in (1.7) of the reverse
process. For the covariance matrix, we choose

~ 1—ay_
Eg(x(k),k) = 0214, where 0 = B}, or 0 = B, = %ﬂk. (1.18)
“ag

For the parametrization of the mean /J,g(l'(k), k), we are motivated by the
following result on the term Lj_; in (1.12).

Lemma 3. Assume that
po(x*D | 2®) = N(J:(kfl);,ug(x(k),k),aild> . (1.19)
Then, the term Ly_; in (1.12), where 2 < k < N, can be written as

1 =~
Ly = 53Eq(Jue(@®, k) — in(a™,20)*) + C, (1.20)
Tk

where C' is a constant independent of 6 and i, is defined in (1.16).

Proof. Let us denote by C' a generic constant that is independent of 6.
From (1.12) and Definition 1, we have

Li_1 =Eq {DKL (q(xw—l) |29, £() ‘pg(x(k_l) |x(k))>}

=Eq |:]E$(k1)~q(z(kl) | 2(8) 2(0)) (log pg(.r(k_l) | x(k)))

=—Eq [Em—lmq(z(k—n | 2(0) 2(0)) (10gp9(95(k71) |93(k))>} +C.

Using (1.19) and the fact that the mean of z(*=1) ~ g(z*=1) | 2(F) 2(©)) is

Lecture 8: Denoising diffusion probabilistic models and normalizing flows

fir () 20 (see (1.16)), we can derive

1 - 2
L1 :REQ [Em(k—l),\,q($(k—l) | (k) 2(0)) (‘x(k b_ ue(x(k), k)|)} +C

1
_QU,%

“20 2E@(!ue 2, K)|* = 20 (29, 20) - py(a®, k)) + €

EQ [Em(k—qu(ww—l) |w(k))a:(0)) <|ug(x(k), k)|2 — ZCC(k*l) . ,Ll,g(:l:(k), k))} + C

1 ~
:T‘]%EQONH@(’C)JC) - uk(z(k)’x(o)”?) +C,

which gives (1.20). O

The expression (1.20) suggests that pg(z*), k) should predict fi,. Note that
(1.9) implies the parametrization

2™ (20 ¢) = Varz® + V1= age, where e ~ N(0,1,). (1.21)

With this, as well as the expression of jiy in (1.16), we can further write (1.20)
as

Ly, —C
1 2
k) (.0 ~ k) (.0 k) (.0 =
=E,© 5[2 2’;&9 () (e),5),kz) —uk(x() ((),5),\/—&7@((2, e) — /1 —aks))‘ }
1 Br 2
k) (.0 k) (.0
=K, ¢ [ﬁ’ﬂe(iﬂ()(x()35)7k) " Jan (x()(CU()75) - 7m5)} } :
(1.22)
Equation (1.22) suggests that ug(z(*), k) must predict \/%T(x(k) - 16_5¢k g),
given z(®). Therefore, we choose the parametrization
1 Br
B) py = —— ((k) _ (k) k) 1.23
Me(il’ R) o x T—ar ak€9($)) ’ ()

(k=1)

where &g is a function that predicts e from z(*). Sampling z ~ po(zF=D|z))

can be achieved by

Lh=1) _ L(x(m B
O V31— ay

Furthermore, with (1.21) and (1.23), equation (1.22) simplifies to

eg(z™®), k)) +okz, where z ~ N(0,14). (1.24)

1.25
:Ew(o))s[Lkg \/7I 0) + V1 — age, k *6|] ()

Empirically, we drop the factor in the expression (1.25) of Lj_; and use (instead
of L) the simplified loss function

Loimpte(0) = By o 20 (VAR + VT = e, k) —] (1.26)

The training and sampling algorithms are summarized in Algorithms 1-2.

Lecture 8: Denoising diffusion probabilistic models and normalizing flows

Algorithm 1 Training

1: repeat

2 20 ~ qo(:L’(O))

3: k ~ Uniform({1,2,...,N})

4: g~ ./\/(07 Id).

5 take gradient descent step on

6 Ve’&e(\/@x(o) +m€7 k) —8‘2
7

until converged

Algorithm 2 Sampling
10 a2 ~ N(O, Id)
2: fork=N,...,1do
3 2~ N(0,1y) if k>1,else 2=0
4: zkb=1) = %(x(k) - L’“&k eo(z®, k)) +oxz
5
6

R —
: end for

. return z(©

1.2 Normalizing flows

The content of this section is based on the references [3, 1].

1.2.1 Basic

The idea of normalizing flows is to express data = € R? as a transformation of
z of the same dimension that follows a simpler distribution p,(z).

Let us first recall the change of variables formula. Assume that z € R?
is a random variable with probability density p.(z) and f : R — R? is a
transformation that is both invertible and differentiable. Denote by p, the
probability density of z = f(z), i.e. the image of z under f. Then, we have the
change of variables formula

pa(7) = p.(2)| det J4(2)| 7, (1.27)
where z = f~1(z) and the Jacobian J¢(z) is the d x d matrix defined as
0z1 0zq
I = | oy (1.28)
9fa ... Ofa
0z1 0zq

Equivalently, (1.27) can be expressed in terms of Jacobian of f~1 as

pa() = po(f 71 () det J -1 (). (1.29)

Assume that f;, fo are two transformations that are both invertible and
differentiable. Then, their composition fyo f; is also invertible and differentiable.
Moreover, we have

(fao f) ™ =fi" o f5

det Jp,op, (2) =det Jp, (f1(2)) - det Jp, (2) . (1.30)

Lecture 8: Denoising diffusion probabilistic models and normalizing flows

In practice, p, is often chosen as a normal distribution and the trans-
formation f is constructed as the composition of elementary transformations

f1, fo,- . fr.- The term “normalizing” refers to the fact that the data distri-
bution of 2 becomes normal distribution under the transformation f~!, while
“flow” refers to the passing of data through the transformations fi, fo, -, fk.

1.2.2 Generative modeling with normalizing flows

Given the target density pk(z), we want to learn a transformation f(-;6) with
parameters 6, such that the density of x = f(z;0), denoted by p,(x;8), is close
to pk(x). We use the (forward) KL divergence in Definition 1 to quantify the
closeness between p, (x;0) and pZ(z):

Dkr (P;(x) | pz($;9)>
Py (@)
= = Euonpy(a) (log pa (25 0)) + C

=~ Epps (o) | logp2(/ 7 (@30)) + log | det Ty (w5 0)] | + C

=Eonp: (2) (log

where C is a constant independent of 6 and the last equality follows from (1.29).
In practice, the transformation f is modeled by a neural network that is trained
with the loss function
LN
Loss(0) = —+ [bgpz(f*l(xn; 0)) + log | det J ;-1 (a; 9)@ . (L31)

n=1

In order for (1.31) to be computable, the neural network architecture has to
be designed such that

1. the input and output dimensions are the same;
2. f is invertible;

3. computing f~! and its Jacobian determinant is efficient.

1.2.3 Normalizing flow models

As mentioned in the previous section, we can design the model f as the composi-
tion of building blocks f1, fa, -, fx. Assume that each fj satisfies the require-
ment at the end of the previous section, then their composition f = fxo---o f;
is invertible and the logarithmic of its Jacobian determinant can be computed
as

K K
log | det J;-1 ()] = 1og(I det Jfgl(zk)‘ = log|det J, 1 (z1)] . (132)
k=1 k=1

where zxg = x and

zo—1 = fr N (z), k=K,...,1. (1.33)

In the following, we briefly mention two types of building blocks, which are
called Nonlinear Independent Components Estimation (NICE) model and Real
Non-Volume Preserving (RealNVP) model.

Lecture 8: Denoising diffusion probabilistic models and normalizing flows

. NICE. The transformation = = (z1,22) = f(z) is defined as

T =21,
e (1.34)
xo =22 + po(z1) ,

where z; € RY and Z9 € R4 are two disjoint subsets that form a

partitions of z, d’ is an integer between 1 and d — 1, and pg : RY — R4

is a neural network. Its inverse is
21 =1,

42 =20 — o). (1.35)

It is straightforward to verify that the Jacobian determinant of f is one.
Therefore, f defines a volume preserving transformation.

. RealNVP. The transformation & = (x1,22) = f(z) is defined as

Tl =z1,

v = exp(0(21)) © 22 + o) (1.36)

where ® denotes elementwise product, and oy, ug : RY — R are two
neural networks. The inverse of f is

Z1 =%,

23 = exp(—09(21)) © (22 — po(n). (1.87)

’

The Jacobian determinant is det Jy-1(x) = exp(— Z;j;f (04(21));), where
(0g(x1)); denotes the jth component of og(z1).

Bibliography

[1] L. Dinh, J. Sohl-Dickstein, and S. Bengio. Density estimation using real
NVP. In International Conference on Learning Representations, 2017.

[2] J. Ho, A. Jain, and P. Abbeel. Denoising diffusion probabilistic models.
In Advances in Neural Information Processing Systems, volume 33, pages
6840-6851, 2020.

[3] G. Papamakarios, E. Nalisnick, D. J. Rezende, S. Mohamed, and B. Laksh-
minarayanan. Normalizing flows for probabilistic modeling and inference. J.
Mach. Learn. Res., 22(1), 2021.

10

