
Lecture 9: Clustering, principal component analysis and autoencoders

Lecture 9: Clustering, principal component analysis and
autoencoders

2025–06–25

1.1 K-means clustering
Given a set of data points D = {x1, x2, . . . , xn} in Rd, clustering aims to par-
tition the n points into k sets S = {S1, S2, . . . , Sk}, so that the within-cluster
sum-of-squares is minimized. Precisely, the objective is to find:

argmin
S

k∑
i=1

∑
x∈Si

|x− µi|2 = argmin
S

k∑
i=1

|Si|Var(Si) , (1.1)

where |Si| denotes the number of points in Si and µi is the mean (also called
centroid) of points in Si, i.e.

µi =
1

|Si|
∑
x∈Si

x . (1.2)

Notice that the following identity holds

|Si|
∑
x∈Si

|x− µi|2 =
1

2

∑
x,y∈Si

|x− y|2 =
∑
x∈Si

|x|2 −
(∑
x∈Si

x
)2

. (1.3)

Therefore, the objective (1.1) is equivalent to

argmin
S

k∑
i=1

1

|Si|
∑

x,y∈Si

|x− y|2 , (1.4)

that is, finding partition so as to minimize the pairwise squared deviations of
points within each cluster.

A common algorithm for solving the problem (1.1) is the so-called “k-means
algorithm”. Given the number of clusters, k, and an initial set of centers
m

(1)
1 , . . . ,m

(1)
k . The algorithm updates the partition and the centers by al-

ternating between the following two steps.

1. Assignment step: update the partition by assigning each point x to the
cluster corresponding to the nearest center.

S
(l)
i =

{
x ∈ D

∣∣∣ |x−m
(l)
i | ≤ |x−m

(l)
j |, ∀1 ≤ j ≤ k

}
. (1.5)

2. Update step: update the cluster centers.

m
(l+1)
i =

1

|S(l)
i |

∑
x∈S

(l)
i

x . (1.6)

We have the following result.

1

Lecture 9: Clustering, principal component analysis and autoencoders

Proposition 1. The objective (1.1) is non-increasing in the k-means algo-
rithm.

Proof. Let us consider the objective
∑k

i=1

∑
x∈S

(l)
i

|x −m
(l)
i |2 at lth step,

for l ≥ 1. In the second step, we fix the partition S
(l)
1 , . . . , S

(l)
k and update

the centers according to (1.6). Using the fact

1

|S(l)
i |

∑
x∈S

(l)
i

x = arg min
c∈Rd

∑
x∈S

(l)
i

|x− c|2,

we obtain

k∑
i=1

∑
x∈S

(l)
i

|x−m
(l+1)
i |2 ≤

k∑
i=1

∑
x∈S

(l)
i

|x−m
(l)
i |2 .

In the first step, we fix the centers and update the partition according to
(1.5). Clearly, we have

k∑
i=1

∑
x∈S

(l+1)
i

|x−m
(l+1)
i |2 ≤

k∑
i=1

∑
x∈S

(l)
i

|x−m
(l+1)
i |2 .

Combining the two inequalities above, we have

k∑
i=1

∑
x∈S

(l+1)
i

|x−m
(l+1)
i |2 ≤

k∑
i=1

∑
x∈S

(l)
i

|x−m
(l)
i |2 ,

which implies that the objective (1.1) is non-increasing.

Remark. 1. Despite of Proposition 1, the k-means algorithm may not
be able to find the optimal partition that solves (1.1).

2. The number of clusters k has to be chosen before applying k-means
algorithm. In practice, the optimal number of clusters needs to be
determined by comparing clustering results obtained with different
numbers of clusters.

3. The total amount of operations required in each iteration is O(n×k).
Therefore, the computational complexity of the k-means algorithm
is O(n× k ×N), where N is the total number of iterations.

1.2 Principal component analysis
Given high dimensional data D = {x1, . . . , xn}, principal component analysis
(PCA) aims at identifying a linear and orthogonal projection

WW⊤x+ b, x ∈ Rd , (1.7)

2

Lecture 9: Clustering, principal component analysis and autoencoders

where W ∈ Rd×k satisfies W⊤W = Ik and b ∈ Rd, such that it minimizes the
reconstruction error

L(W, b) =
1

n

n∑
i=1

|xi − (WW⊤xi + b)|2 . (1.8)

It is straightforward to see that the optimal b ∈ Rd is given by

b =
1

n

n∑
i=1

(xi −WW⊤xi) = x̄−WW⊤x̄ , (1.9)

where

x̄ =
1

n

n∑
i=1

xi (1.10)

is the empirical mean of the data. Substituting (1.9) into (1.7), we see that the
linear projection is

WW⊤(x− x̄) + x̄, x ∈ Rd . (1.11)

Therefore, we only need to find the optimal matrix W .
Substituting (1.9) into (1.8), we see that finding the optimal W ∈ Rd×k

amounts to minimizing

L(W) =
1

n

n∑
i=1

|(xi − x̄)−WW⊤(xi − x̄)|2 , (1.12)

under the constraint W⊤W = Ik.
We have the following result.

Proposition 2. Define the empirical covariance matrix

Σ̂ =
1

n

n∑
i=1

(xi − x̄)(xi − x̄)⊤ ∈ Rd×d . (1.13)

Then, for the objective in (1.12), we have

L(W) =
1

n

n∑
i=1

|xi − x̄|2 − tr(W⊤Σ̂W) . (1.14)

3

Lecture 9: Clustering, principal component analysis and autoencoders

Proof. From (1.12), using W⊤W = Ik, we can derive

L(W) =
1

n

n∑
i=1

|(xi − x̄)−WW⊤(xi − x̄)|2

=
1

n

n∑
i=1

(
|xi − x̄|2 − 2(xi − x̄)⊤WW⊤(xi − x̄) + (xi − x̄)⊤WW⊤WW⊤(xi − x̄)

)
=
1

n

n∑
i=1

(
|xi − x̄|2 − 2(xi − x̄)⊤WW⊤(xi − x̄) + (xi − x̄)⊤WW⊤(xi − x̄)

)
=
1

n

n∑
i=1

(
|xi − x̄|2 − (xi − x̄)⊤WW⊤(xi − x̄)

)
.

Noticing the identity

(xi − x̄)⊤WW⊤(xi − x̄) = tr
(
W⊤(xi − x̄)(xi − x̄)⊤W

)
,

and using (1.13), we can continue to derive

L(W) =
1

n

n∑
i=1

(
|xi − x̄|2 − (xi − x̄)⊤WW⊤(xi − x̄)

)
=
1

n

n∑
i=1

|xi − x̄|2 − 1

n

n∑
i=1

tr
(
W⊤(xi − x̄)(xi − x̄)⊤W

)
=
1

n

n∑
i=1

|xi − x̄|2 − tr(W⊤Σ̂W) .

Proposition 2 implies that minimizing L(W) in (1.12) is equivalent to solving

max
W∈Rd×k,W⊤W=Ik

tr(W⊤Σ̂W) . (1.15)

Let us denote by W1, . . . ,Wk ∈ Rd the column vectors of W . Then, direct
computation shows that

tr(W⊤Σ̂W) =

k∑
i=1

W⊤
i Σ̂Wi ,

W⊤W = Ik ⇐⇒ W⊤
i Wj = δij , ∀1 ≤ i, j ≤ k .

(1.16)

Therefore, (1.15) is equivalent to

max
W1,...,Wk∈Rd

k∑
i=1

W⊤
i Σ̂Wi , subject to W⊤

i Wj = δij , ∀1 ≤ i, j ≤ k . (1.17)

Note that the matrix Σ̂ in (1.13) is clearly symmetric. Moreover, we have

v⊤Σ̂v =
1

n

n∑
i=1

v⊤(xi − x̄)(xi − x̄)⊤v =
1

n

n∑
i=1

|(xi − x̄)⊤v|2 ≥ 0 , ∀ v ∈ Rd .

4

Lecture 9: Clustering, principal component analysis and autoencoders

Hence, Σ̂ is semi-positive definite. As a result, all eigenvalues of Σ̂ are non-
negative real numbers.

Moreover, it can be shown (we omit the proof) that the maximum of (1.17)
is achieved when W1, . . . ,Wk are the k (pairwise orthogonal and normalized)
eigenvectors of Σ̂ corresponding to the largest k eigenvalues.

Based on the above analysis, we summarize the algorithm of PCA as follows.

1. Compute Σ̂ in (1.13), where x̄ = 1
n

∑n
i=1 xi.

2. Compute the (pairwise orthogonal and normalized) eigenvectors W1, . . . ,Wk

corresponding to the k largest eigenvalues of Σ̂, so that W⊤
i Wj = δij for

i, j = 1, . . . , k.

3. Let W ∈ Rd×k be the matrix whose column vectors are W1, . . . ,Wk.

Once W is computed, we obtain the linear projection in (1.11).

Remark (PCA by SVD decomposition). Let X ∈ Rn×d be the data matrix,
whose ith row is xi − x̄. Then, we can verify Σ̂ = 1

nX
⊤X. Consider the

SVD decomposition of X = UΛV ⊤, where U ∈ Rn×n satisfies U⊤U = In,
Λ ∈ Rn×d is a rectangular diagonal matrix with positive numbers, and
V ∈ Rd×d satisfies V ⊤V = Id. Then, Σ̂ = 1

nX
⊤X = 1

nV (Λ⊤Λ)V ⊤,
where Λ⊤Λ ∈ Rd×d is a diagonal matrix. Therefore, we can construct W
by selecting column vectors of V corresponding to the k largest singular
values.

1.3 Autoencoders
Different from PCA in the previous section which maps data in Rd to a low-
dimensional space Rk, where 1 ≤ k < d, by a linear projection, autoencoders
provide a low-dimensional representation of data using a nonlinear projection
ξ : Rd → Rk. The dimension k is often called latent dimension or bottleneck
dimension. Precisely, an autoencoder is a function of the form f = φ ◦ ξ, where
ξ : Rd → Rk, the encoder, maps an input x to the low-dimensional space Rk,
and φ : Rk → Rd, the decoder, maps the “encoded” state ξ(x) in Rk back to the
high-dimensional space Rd.

Assume that the data is sampled from a probability distribution µ. The low-
dimensional representation is “good”, if the reconstructed state f(x), obtained
by first encoding x and then decoding, remains close to x, in an average sense
for data x ∼ µ. In other words, the autoencoder is optimized by minimizing the
so-called reconstruction loss

L(ξ, φ) =
∫
Rd

|φ(ξ(x))− x|2 dµ = Ex∼µ|φ(ξ(x))− x|2 . (1.18)

Assume that the data set is D = {x1, . . . , xn}. Then, the autoencoder is learnt
by minimizing the empirical loss function

L̂(ξ, φ) = 1

n

n∑
i=1

|φ(ξ(xi))− xi|2 . (1.19)

5

Lecture 9: Clustering, principal component analysis and autoencoders

x1

x2

x3

x4

xd

...

...

...

z1

zm

...

y1

y2

y3

y4

yd

...

input outputencoder decoder

Figure 1.1: Illustration of autoencoders.

Clearly, if we choose a linear encoder and a linear decoder as

ξ(x) = W⊤x, φ(z) = Wz + b,

where W ∈ Rd×k, b ∈ Rd, and W⊤W = Ik ,
(1.20)

the autoencoder f = φ ◦ ξ reduces to the linear map in (1.7) and the loss
function (1.19) recovers the objective (1.8), respectively. Hence, in this setting,
learning autoencoders recovers PCA. In general, autoencoders are represented
by neural networks (see Figure 1.1) and learning autoencoders can be viewed as
a nonlinear generalization of PCA.

In the following, we characterize the minimizer of the reconstruction loss
(1.18). By optimizing the decoder first, we obtain the following result.

Proposition 3. Assume that x ∼ µ and let µ̃ be the distribution of z = ξ(x).
We have

min
ξ

min
φ

Ex∼µ|φ(ξ(x))− x|2 = min
ξ

Ez∼µ̃

[
Var(x| ξ(x) = z)

]
, (1.21)

where Varx∼µ(x| ξ(x) = z) denotes the variance of x conditioned on the
event that ξ(x) = z. Moreover, for a fixed encoder ξ : Rd → Rk, the
optimal decoder φ : Rk → Rd is given by

φξ(z) = Ex∼µ(x | ξ(x) = z) , ∀ z ∈ Rk . (1.22)

Proof. Recall that the law of total expectation implies

Ex∼µ

(
|φ(ξ(x))− x|2

)
= Ez∼µ̃

[
Ex∼µ

(
|φ(ξ(x))− x|2

∣∣∣ ξ(x) = z
)]

. (1.23)

Also, for a fixed z ∈ Rk, it is straightforward to verify that

min
x′∈Rd

Ex∼µ

(
|x′ − x|2

∣∣∣ ξ(x) = z
)
= Varx∼µ

(
x
∣∣ ξ(x) = z

)
, (1.24)

and the minimum is attained when x′ = Ex∼µ(x | ξ(x) = z). Therefore,

6

Lecture 9: Clustering, principal component analysis and autoencoders

Figure 1.2: Illustration of principal curve.

using (1.23) and (1.24), we can derive

min
ξ

min
φ

Ex∼µ|φ(ξ(x))− x|2

=min
ξ

min
φ

Ez∼µ̃

[
Ex∼µ

(
|φ(ξ(x))− x|2

∣∣∣ ξ(x) = z
)]

=min
ξ

min
φ

Ez∼µ̃

[
Ex∼µ

(
|φ(z)− x|2

∣∣∣ ξ(x) = z
)]

=min
ξ

Ez∼µ̃

{
min
φ(z)

[
Ex∼µ

(
|φ(z)− x|2

∣∣∣ ξ(x) = z
)]}

=min
ξ

Ez∼µ̃

[
Varx∼µ(x| ξ(x) = z)

]
,

and the optimal decoder is given by (1.22).
The expression (1.21) implies that the optimal encoder ξ minimizes the averaged
conditional variances on its level-sets. The expression (1.22) states that, for a
fixed encoder ξ, the optimal decoder maps z to the center of all points x that
satisfy ξ(x) = z (i.e. the pre-image of z under ξ).

Alternatively, by optimizing the encoder first, we immediately obtain the
following characterization.

Proposition 4.

min
φ

min
ξ

Ex∼µ|φ(ξ(x))− x|2 = min
φ

Ex∼µ|φ(ξφ(x))− x|2 ,

where
ξφ(x) = arg min

z∈Rk
|φ(z)− x|, ∀ x ∈ Rd . (1.25)

The expression (1.25) states that, given the decoder φ, the optimal encoder
maps the data x to the index of the closest point (under the decoder) to x.

To summarize, the optimal autoencoder satisfies the self-consistent condi-
tion:

φ(z) = Ex∼µ(x | ξ(x) = z), z ∈ Rk ,

ξ(x) = arg min
z∈Rk

|φ(z)− x| , x ∈ Rd .

In particular, when the bottleneck dimension k = 1, autoencoders recover the
so-called principal curves.

7

