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1.1 Transition events
We consider the Brownian dynamics in Rd

dXt = −∇V (Xt) dt+
√
2εdBt, t ≥ 0 , (1.1)

where V : Rd → R is a smooth potential function, Bt is a d-dimensional Brow-
nian motion, and ε > 0 is a constant.

We know from previous lectures that, under certain conditions, the dynam-
ics of Xt is ergodic and the invariant distribution of Xt is the Boltzmann dis-
tribution, whose probability density is π(x) = 1

Z e−
1
εV (x), for x ∈ Rd, where

Z =
∫
Rd e

− 1
εV (x)dx is a normalizing constant.

We introduce the basin of attraction associated to a local minimum point
of V as follows.

Definition 1 (Basin of attraction). Let a ∈ Rd be a local minimum point
of V . The basin of attraction associated to a, denoted by Ω(a), is the set of
states that converge to a under the flow map X(t;x) : [0,+∞)×Rd → Rd

of the ODE

dX(t;x)

dt
= −∇V (X(t;x)) , t ≥ 0 , X(0;x) = x . (1.2)

Precisely,
Ω(a) =

{
x ∈ Rd

∣∣ lim
t→+∞

X(t;x) = a
}
. (1.3)

We are interested in the case where ε is small. In this case, the perturbation
of the noise in (1.1) is weak and the process Xt follows largely the negative
gradient direction of the potential V . Once the process enters the basin of
attraction associated to a local minimal point, say a, it will be attracted to the
vicinity of a and will stay there for a relatively long time, before it can leave
the basin of attraction Ω(a) under the perturbation of the noise.

Let a, b ∈ Rd be two local minimum points of V such that the separatrix
∂Ω(a) ∩ ∂Ω(b) ̸= ∅. When ε is small, numerical simulations of the transition
of the process Xt from Ω(a) to Ω(b) become computationally challenging due
to their rare occurances. Our goal is to characterize such transition events, e.g.
to identify the most probable transition pathways.

1.2 Minimal energy path
Given two local minimum points a and b, we want to identify the most probable
transition pathways of the process Xt (1.1) from a to b, as ε → 0.

To this end, we apply the Wentzell-Freidlin theory [4] (also the large de-
viation theory in probability), which characterizes the probability of a path
using the so-called action functional. Given T > 0, we define the space of all
continuous transition paths from a to b as

PT =
{
φ
∣∣∣φ ∈ C([0, T ],Rd), φ(0) = a, φ(T ) = b

}
.
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Then, the Wentzell-Freidlin theory states that

lim
ε→0

εlnP (B) = −min
φ∈B

IT (φ) , (1.4)

for any measurable subset B ⊂ PT , where IT , the action functional associated
to the dynamics (1.1), is defined as

IT (φ) =
1

4

∫ T

0

∣∣∣φ̇(t) +∇V (φ(t))
∣∣∣2 dt . (1.5)

Similarly, on a time interval [T1, T2], where −∞ < T1 < T2 < +∞, the
action functional is

I[T1,T2](φ) =
1

4

∫ T2

T1

∣∣∣φ̇(t) +∇V (φ(t))
∣∣∣2 dt , (1.6)

among all paths which satisfy

φ(T1) = a, φ(T2) = b . (1.7)

Now, we consider the lower bound of the action in (1.6). Recall that Ω(a)
and Ω(b) are the basins of attraction associated to a and b, respectively, and
that the separatrix ∂Ω(a)∩∂Ω(b) is non-empty. For a path φ that satisfies (1.7),
we assume that φ intersects with the separatrix at time T ∗, where T∗ ∈ (T1, T2).
We can derive

I[T1,T2](φ) =
1

4

∫ T∗

T1

∣∣∣φ̇(t) +∇V (φ(t))
∣∣∣2 dt+ 1

4

∫ T2

T∗

∣∣∣φ̇(t) +∇V (φ(t))
∣∣∣2 dt

=
1

4

∫ T∗

T1

∣∣∣φ̇(t)−∇V (φ(t))
∣∣∣2dt+ 1

4

∫ T2

T∗

∣∣∣φ̇(t) +∇V (φ(t))
∣∣∣2dt

+

∫ T∗

T1

φ̇(t) · ∇V (φ(t)) dt

≥
∫ T∗

T1

φ̇(t) · ∇V (φ(t))dt

=V (φ(T ∗))− V (φ(T1))

≥V (c)− V (a) =: ∆V,
(1.8)

where c is the state on Ω(a) ∩ ∂Ω(b) with the minimal potential, i.e.

c = argmin
x∈∂Ω(a)∩∂Ω(b)

V (x) . (1.9)

On the other hand, there exists a path φ, called the minimal energy path,
which satisfies that

φ(T1) = a, φ(T ∗) = c, φ(T2) = b,

φ̇(t) =

{
∇V (φ(t)), T1 < t < T ∗ ,

−∇V (φ(t)), T ∗ < t < T2,

(1.10)
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for T1 → −∞, T2 → +∞. The lower bound of the action in (1.8) will be achieved
by this path. Therefore, the limit in (1.4) implies that the minimal energy path
is the most probable transition path when ε → 0.

Intuitively, the transition happens in two stages. The first stage corresponds
to the time [T1, T

∗], during which the system follows the gradient direction of
the potential V until it reaches the point c on the separatrix. In this stage,
the system has to overcome the potential barrier and the system’s potential
increases from V (a) to V (c). The second stage corresponds to the time interval
[T ∗, T2], during which the system enters the basin of attraction associated to
b and approaches to b following the negative gradient direction of V . In this
stage, the system’s potential decreases from V (c) to V (b).

Note that the minimal energy path in (1.10) can also be characterized as

φ̇(t) ∥ ∇V (φ(t)) , or ∇V ⊥(φ(t)) = 0 , (1.11)

where ∇V ⊥ denotes the component of ∇V that is orthogonal to the path.

1.3 String method
String method is a numerical method for computing the minimal energy path
(1.11) connecting two local minimum points a and b [1, 2]. Different from the
parametrization of the path by time t adopted in the previous section, in the
following we consider a geometric parametrization of the path by a parameter
s ∈ [0, 1].

Given an initial path φ(s) such that φ(0) = a and φ(1) = b, the string
method evolves each state φ(s) along the path according to the ODE

dXt

dt
= −∇V (Xt) , (1.12)

while keeping the magnitude of the tangent vector |φ̇(s)| to be uniform, that is,
|φ̇(s)| ≡ C for s ∈ [0, 1], where C > 0.

The dynamics of the path under the string method can be rather compli-
cated. Assume that the path converges to a limiting path, which we again
denote by φ. The convergence indicates that the path φ is invariant under the
ODE (1.12), although each state φ(s) may move along the path φ. This in turn
implies that the gradient ∇V (φ(s)) is parallel to the tangent direction φ̇(s). In
other words, φ is a minimal energy path satisfying the characterization (1.11).

In practice, the path φ is discretized into N states φ0, φ1, . . . , φN ∈ Rd,
where φ0 = a and φN = b. The string method updates these discrete states
iteratively until certain convergence criteria is met. Let φk

0 , φ
k
1 , . . . , φ

k
N ∈ Rd

denote the discrete states at kth iteration, where k ≥ 0. Each iteration consists
of the following two steps.

1. Update:
φ∗
i = −τ∇V (φk

i ) + φk
i , i = 0, 1, 2, · · · , N,

where τ is the step-size.

2. Reparameterization. For i = 1, . . . , N − 1, the new state φk+1
i is obtained

by linear interpolation between φ∗
j and φ∗

j+1:

φk+1
i =

L∗
j+1 − Li

L∗
j+1 − L∗

j

φ∗
j +

Li − L∗
j

L∗
j+1 − L∗

j

φ∗
j+1 ,
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where j is an index satisfying L∗
j < Li ≤ L∗

j+1, and the lengths L∗
i , Li are

defined as

L∗
0 = L0 = 0 ,

L∗
i =

i−1∑
j=0

|φ∗
j+1 − φ∗

j |

N−1∑
j=0

|φ∗
j+1 − φ∗

j |
, Li =

i

N
, i = 1, · · · , N .

1.4 Computing saddle point
Let φ be the minimal energy path parametrized by s ∈ [0, 1] such that φ(0) = a,
φ(1) = b and φ(s∗) = c, where s∗ ∈ (0, 1) and c is the state given in (1.9).

From the discussion above, we know that c is the state on the path φ with the
highest potential V . At the same time, c is defined in (1.9) as the state on the
separatrix (a manifold of dimension d−1) with the lowest potential. Combining
these two facts, we know that c is an index-1 critical point of potential V . In
particular, it satisfies

1. ∇V (c) = 0.

2. The Hessian of V at c, denoted by H = HessV (c) ∈ Rd×d, has d − 1
positive eigenvalues and one negative eigenvalue.

Tangent direction of φ at saddle point. It turns out that the tangent vec-
tor φ̇(s∗) is the eigenvector of H corresponding to its unique negative eigenvalue.
To see this, notice that the minimal energy path satisfies (see (1.10))

φ̇(s) = −C(s)∇V (φ(s)) , s ∈ (0, 1) , (1.13)

where C(s) is some scalar quantity, such that C(s) > 0 for s ∈ (s∗, 1) and
C(s) < 0 for s ∈ (0, s∗). Expanding ∇V at c = φ(s∗) and utilizing the condition
∇V (c) = 0, we obtain

φ̇(s) = −C(s)∆sH
φ(s)− φ(s∗)

∆s
+O(|φ(s)− φ(s∗)|2), (1.14)

where ∆s = s− s∗. Letting s > s∗ and s → s∗, since

lim
s→s∗

φ(s)− φ(s∗)

∆s
= φ̇(s∗),

from (1.14) we see that C(s)∆s converges and

Hφ̇(s∗) = µφ̇(s∗), (1.15)

for some µ < 0, which implies that µ is the unique negative eigenvalue of H and
φ̇(s∗) is the corresponding eigenvector.

In practice, the minimal energy path computed by the string method is
represented by finite discrete states. Among these discrete states, the state that
has the highest potential V provides an approximation of the saddle point c. In
the following, we discuss two numerical methods that yield accurate estimation
of the saddle point.
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1. Climbing image method [5].

Due to the existence of the negative eigenvalue µ of H = HessV (c), the
saddle point c is an unstable stationary state under the dynamics (1.2),
and the analysis above implies that the unique unstable direction (the
eigenvector corresponding to µ) is

τ =
φ̇(s∗)

|φ̇(s∗)|
. (1.16)

Based on this observation, we can compute the saddle point c by updating
an initial guess ϕ0 of c using the dynamics

ϕ̇t = −∇V (ϕt) + 2⟨∇V (ϕt), τ0⟩τ0 , t ≥ 0 , (1.17)

where τ0 is an approximation of the normalized unstable direction τ . Intu-
itively, in (1.17), the vector field is modified so that the unstable direction
at c becomes a stable direction. In fact, because ∇V (c) = 0, it is clear that
c is a stationary state under (1.17). Moreover, the Jacobian of the vector
field of (1.17) at c is −(I−2τ0τ

⊤
0 )H, whose eigenvalues have negative real

parts, provided that τ0 is close to τ . This analysis shows that the saddle
point c becomes a stable stationary state under (1.17). Therefore, as long
as the initial state ϕ0 is close to c and τ0 is a good approximation of the
unstable direction τ , the dynamics ϕt will converge to c as t → +∞.

In practice, once the minimal energy path φ is identified by string method,
one can choose the state with the highest potential as an initial guess of the
saddle point, and obtain an approximation of the unstable direction (1.16)
using finite difference method. After that, one can numerically compute
the saddle point by simulating the dynamics (1.17).

2. Gentlest Ascent Dynamics (GAD) [3].

The second method employs the following dynamics

ϕ̇t =−∇V (ϕt) + 2
⟨∇V (ϕt), τt⟩

⟨τt, τt⟩
τt,

τ̇t =−∇2V (ϕt)τt +
⟨τt,∇2V (ϕt)τt⟩

⟨τt, τt⟩
τt,

(1.18)

in order to find an index-1 critical point of V . In contrast to the previous
method, where the vector τ0 approximating the unstable direction is fixed
in (1.17), this method searches the saddle point and at the same time
updates the approximation of the unstable direction. Note that simulating
(1.18) requires computing the Hessian of V , whereas simulating (1.17) does
not.
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