Clustering, principal component analysis, and
autoencoders

June 25, 2025
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Reminder

@ Exercises: solve 8 — 10 questions. Sumission deadline: 23.07.2025

@ Course project: Select 1 topic to conduct numerical experiment, and
write a short report. Submission deadline: 27.07.2025

© give a 10-15 min presentation. Date: 11.07 or 18.07.

Remark:

@ Two persons can work together on the course report. In this case, the
project should be more comprehensive. Each should contribute equally
to the experiment and to the writing.

@ Code of conduct for scientific writing, e.g. use of materials of this course,
online materials, and ChatGPT!
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Plan for the next 3 weeks

Lectures:

@ 02.07:
Q 09.07:
© 16.07:

Practice:

@ 04.07:
Q 11.07:
@ 18.07:

transition pathways, string method.

transition pathway theory on graphs, committor.

summary

numerical examples
numerical examples; presentation
presentation; discussion on exercises
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Machine learning tasks

@ Supervised learning

Dataset contains features and labels: D = {(xn, yn)}N._,.

@ Classification (pattern recognition)
@ Regression
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Machine learning tasks

@ Supervised learning

Dataset contains features and labels: D = {(xn, yn)}N._,.

@ Classification (pattern recognition)
@ Regression

@ Unsupervised learning
Data: D = {x,}1\_,.
@ clustering: k-means

e discovering latent structure: PCA
@ generative modeling
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ML package: scikit-learn

.wn Install User Guide API Examples Community More -

scikit-learn

Machine Learning in Python

ication

Classi
Identifying which category an object belongs to.

Applications: Spam detection, image recognition.
Algorithms: Gradient boosting, nearest neighbors,

Q © 1.7.0 (stable)

« Simple and efficient tools for predictive data analysis
« Accessible to everybody, and reusable in various contexts

« Built on NumPy, SciPy, and matplotiib
« Open source, commercially usable - BSD license

Regression
Predicting a continuous-valued attribute associated
with an object.

Drug response, stock prices.

random forest, logistic regression, and more.

Algorithms: Gradient boosting, nearest neighbors,

random forest, ridge, and more.

Clustering
Automatic grouping of similar objects into sets.
Applications: Customer segmentation, grouping

‘experiment outcomes.
Algorithms: k-Means, HDBSCAN, hierarchical

clustering, and more.

nality reduction

Reducing the number of random variables to consider.

Dimen:

Applications: Visualization, increased efficiency.
Algorithms: PCA, feature selection, non-negative

Examples

Model selection

Comparing, validating and choosing parameters and
models.

Improved accuracy via parameter

‘matrix factorization, and more.

tuning.
Algorithms: Grid search,
and more.

ross validation, metrics,

Preprocessing

Feature extraction and normalization.

Applications: Transforming input data such as text for
use with machine learning algorithms.

Algorithms: Preprocessing, feature extraction, and

more.
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Part 1: K-means clustering
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Clustering task

@ data points D = {xy,Xz,..., X} in RY
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Clustering task

@ data points D = {xy,Xz,..., X} in RY

@ goal: partition data into k sets S = {5y, S5,..., Sk}
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Clustering task

@ data points D = {xy,Xz,..., X} in RY
@ goal: partition data into k sets S = {5y, S5,..., Sk}
@ within-cluster sum-of-squares:
k k
arg mSin ; (;l |x — u/|2) =arg msin ; |Si|Var(S;) ,

where p;j = ‘;—l > xes, X is the mean (also called centroid) of points in S;.
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Clustering task

Mixture of Gaussian Blobs
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Clustering task

@ within-cluster sum-of-squares:

k k
arg mSin Z ( Z |x — p,-|2) =arg msin ; |Si|Var(S;) ,

i=1 xe§;

_ 1
where i = 57 > ies, X-
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Clustering task
@ within-cluster sum-of-squares:

K
arg m|n Z (Z |X — pil ) =arg msinz |Si|Var(S;) ,
i=1

i=1  xe§;
_
where /i = 157 2 xes, X

@ The identity

1
IS Ix—mlP=5 > Ix—yP

XES; X,y€S;
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Clustering task

@ within-cluster sum-of-squares:

K
arg m|n Z (Z |X — pil ) =arg msinz |Si|Var(S;) ,
i=1

i=1  xe§;
_
where /i = 157 2 xes, X

@ The identity

ISil Y Ix = il = Z\X yIE= 0 IxP = (D x)?

XES; xyeS XES; XES;
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Clustering task
@ within-cluster sum-of-squares:

k k
arg mSin Z ( Z |x — u/|2) =arg msin ; |Si|Var(S;) ,

i=1 X€ES;
;
where i = 57 > ies, X-

@ The identity

S I mP = 5 3 k- yP= 30 - (w02

XES,‘ x,yeS,» XES,’ XGS,‘
@ We have
k k 1
argménZ(Z|x—u,| ) = argmslnz|si‘ Z Ix —y|~.
i=1 xeS§; i=1 X,yES;

Hence, finding partition to minimize the pairwise squared deviations of points
within each cluster.
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k-means algorithm
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https://en.wikipedia.org/wiki/K-means_clustering

k-means algorithm

Input:
@ the number of clusters k
Q initial centers m{", ..., m{")
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https://en.wikipedia.org/wiki/K-means_clustering

k-means algorithm

Input:
@ the number of clusters k
Q initial centers m{", ..., m{")
Algorithm:
@ Assignment step: assigning each point x to the cluster with the nearest
center.

i

8" ={xe|x—mP < x—mP v <j<k}. (1)
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k-means algorithm

Input:
@ the number of clusters k
Q initial centers m{", ..., m{")
Algorithm:
@ Assignment step: assigning each point x to the cluster with the nearest
center.

i

8" ={xe|x—mP < x—mP v <j<k}. (1)

@ Update step:
/+1
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https://en.wikipedia.org/wiki/K-means_clustering

k-means algorithm

Input:
@ the number of clusters k
Q initial centers m{", ..., m{")
Algorithm:
@ Assignment step: assigning each point x to the cluster with the nearest
center.

i

8" ={xe|x—mP < x—mP v <j<k}. (1)

@ Update step:
/+1

(@)

lllustration: https://en.wikipedia.org/wiki/K-means_clustering
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https://en.wikipedia.org/wiki/K-means_clustering

k-means algorithm

within-cluster sum-of-squares:

arg mSin zk: (Z |x — u,-|2) .

i=1 XES;
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k-means algorithm

within-cluster sum-of-squares:

arg msin zk: (Z |x — u,-|2) . (3)

i=1 XES;

Proposition

The objective (3) is non-increasing in the k-means algorithm.
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k-means algorithm

within-cluster sum-of-squares:

arg mSin zk: (Z |x — u,-|2) . (3)

i=1 XES;

Proposition

The objective (3) is non-increasing in the k-means algorithm.

The update step and the assignment step imply

k k
S X =mPP=3 N x—m{*VP

=1 xest) =1 xes
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k-means algorithm

within-cluster sum-of-squares:

argmin ij (> b= mf?). 3

i=1 XES;

Proposition

The objective (3) is non-increasing in the k-means algorithm.

The update step and the assignment step imply

k K k
Z Z |X—m/('l)|222 Z |x—m,(/+1)|222 Z |x—m§/+1)|2.

=1 xest) =1 xes

=1 Xesfl+1)
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Remark

Algorithm:
@ Assignment step:
s,(”:{xeD]|x—m§’)|g|x—m}”\,v1gjgk}. (4)
141
Q Update step: m!{'™") = |S1,")\ ersf’) X.
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Remark

Algorithm:
@ Assignment step:
s,(”:{xeD]|x—m§’)|g|x—m}”\,v1gjgk}. (4)
I+1
Q Update step: m!{'™") = |S1,")\ ersf” X.

@ The k-means algorithm may not be able to find the optimal partition.
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Remark

Algorithm:
@ Assignment step:

s,(”:{xeD]|x—m§’)|g|x—m}”\,v1gjgk}. (4)
@ Update step: m{"™) = 15" i x.

0
1Sl

@ The k-means algorithm may not be able to find the optimal partition.

@ The number of clusters k has to be chosen beforehand. The optimal
number of k needs to be determined, e.g. by comparing clustering results
obtained with different k.
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Remark

Algorithm:
@ Assignment step:
s,(”:{xeD]|x—m§’)|g|x—m}”\,v1gjgk}. (4)
141
Q Update step: m!{'™") = |S1,")\ ersf’) X.

@ The k-means algorithm may not be able to find the optimal partition.

@ The number of clusters k has to be chosen beforehand. The optimal
number of k needs to be determined, e.g. by comparing clustering results
obtained with different k.

@ The computational complexity is O(n x k x N), where N is the total
number of iterations.
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Non-optimal Number of Clusters

-10 -5 0 5
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Part 2: Principal component analysis (PCA)
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Problem setup

@ dataD = {xy,...,X,} in R, where d > 1.
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Problem setup

@ dataD = {xy,...,X,} in R, where d > 1.

@ PCA aims at identifying a linear and orthogonal projection
fX)=WWTx+b, VxeR?, (5)

where W € R9*K satisfies W W = I, and b € R? .
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Problem setup

@ dataD = {xy,...,X,} in R, where d > 1.

@ PCA aims at identifying a linear and orthogonal projection
fX)=WWTx+b, VxeR?, (5)
where W ¢ RI*¥ gatisfies WT W = |y and b € RY.

© criteria: reconstruction error

L(W,b) = Z\x, (WWTx; + b)?. (6)
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lllustration

—44

_a
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Simplification by removing b

@ Reconstruction error: L(W,b) = 1 577 |x; — (WW T x; + b)|2.

n I
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Simplification by removing b

@ Reconstruction error: L(W,b) = 1 577 |x; — (WW T x; + b)|2.

n I

@ Clearly, the optimal b is
1 n
_ ! . Ty,
b= nZ(x, WwWT x;)

i=1
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Simplification by removing b

@ Reconstruction error: L(W,b) = 1 577 |x; — (WW T x; + b)|2.

n I

@ Clearly, the optimal b is
1w 1<
= - ~WWTXx)=Xx—WW'x, wherex=-3Y x. (7
b nZ(x, X)) =X X, where X n;:x, (7)

i=1
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Simplification by removing b

@ Reconstruction error: L(W,b) = 1377 |x; — (WW T x; + b)|2.
@ Clearly, the optimal b is
1 n 1 n
b= > (xi—WWTx)=X—-WW'X, whereX = - ;x,. (7)

i=1

© Hence
fX)=WWTx+b=WWT"(x-X)+X,
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Simplification by removing b
@ Reconstruction error: L(W,b) = 1377 |x; — (WW T x; + b)|2.
@ Clearly, the optimal b is
1w 1<
b= > (xi—WWTx)=X—-WW'X, whereX = - Zx,-. (7)

i=1

@ Hence
f(x ):WWTx+b:WWT(x—)_<)+)‘(,

Z| — WWT (x; - X2,

under the constraint WT W = .
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Simplification by removing b

@ Reconstruction error: L(W,b) = 1377 |x; — (WW T x; + b)|2.
@ Clearly, the optimal b is

1 n

i, _ I
b:EZ(Xi—WWTx,-):x—WWTx, wherex:EZx,-.

i=1

@ Hence
f(x ):WWTx+b:WWT(x—)_<)+)‘(,

Z |(x - WWT(x - X)?,
under the constraint WT W = .

Goal: find W that minimizes L(W).

(7)
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Expression of L(W)

Using W' W = I, and t(AB) = tr(BA), we can derive
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Expression of L(W)

Using W' W = I, and t(AB) = tr(BA), we can derive

L) =1 3 -3 - W -
i=1
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Expression of L(W)
Using W' W = I, and t(AB) = tr(BA), we can derive
1¢ ¥ T )12
LW) =— > [(xi = %) = WWT (x = X)|
i=1

: n X X)" T X o\ T T _
—n§<|xi—X|2_2(Xi—X) WW ' (xi — X) + (xi — x) ' WW (X/—X))
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Expression of L(W)
Using W' W = I, and t(AB) = tr(BA), we can derive
1¢ ¥ T )12
LW) =— > [(xi = %) = WWT (x = X)|
i=1

: n X X)" T X o\ T T _
—n§<|xi—X|2_2(Xi—X) WW ' (xi — X) + (xi — x) ' WW (X/—X))

'y X2 o\ T T _
:n;(|xi—X| —(x;i—X)" ww (X/—X))
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Expression of L( W)

Using WT W = I, and tr(AB) = tr(BA), we can derive
ZI — WWT (x — %)
:EZOXI_)—(P_Z( Xi ) WWT( _X)+(Xl )TWWT(X/'_)_())
z% zn: (|x,- —XP = (= X)TWWT(x; — )‘())

*Z'XI ——Ztr(WT(X,-—)_()(X,-—)_()TW)
i=1
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Expression of L(W)

Using W' W = I, and t(AB) = tr(BA), we can derive

ZI ~ WWT (xi — X)[?

:EZ('X"—*F—?(' X)TWWT (% = X) + (xi = X) T WWT (x; —

=li (1%~ (- %) WW (- )

*Z'XI Ztr(WT(X, —X)06—%)T W)

i=1

= Z Ixi — X|> —tr(WTEW),
i=1

>‘<))
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Expression of L(W)

Using W' W = I, and t(AB) = tr(BA), we can derive

ZI ~ WWT (xi — X)[?

:EZ('X"—*F—?(' X)TWWT (% = X) + (xi = X) T WWT (x; —

:1E z”: (I = %> = (x = )T WW (%~ %))
1 Z I — Ztr(WT(X, —X)06—%)T W)
i=1

= Z Ixi — X|> —tr(WTEW),
i=1

where £ = 1577 (% — X)(x — X)T.

>‘<))
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Expression of L(W)

To summarize, we have obtained the following result.

Proposition

__1 . & T )2 __1 u =2 T&
L(W)_Bgl(xl_x)_ww (X/_X)| _EZ|X’_X| —tr(W ZW)

=1
where ¥ the empirical covariance matrix

.1 _ _ y
Y = E;(x;—x)(x,-—x)T e R9x9, (9)
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Reformulation

@ Minimizing L(W) is equivalent to solving

max wr(WTEW).

WEeRIxK WT W=l

(10)
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Reformulation

@ Minimizing L(W) is equivalent to solving

max w(WTSW). (10)
WeRIXK WT W=l
@ Denote by Wi, ..., Wk € RY the column vectors of W. Direct computation
shows that

k
w(WTEW)=> W'SW,,
i=1

WIW=l <« WW=6 VY1<ij<k.
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Reformulation

@ Minimizing L(W) is equivalent to solving

max w(WTSW). (10)
WeRIXK WT W=l
@ Denote by Wi, ..., Wk € RY the column vectors of W. Direct computation
shows that

k
w(WTEW)=> W'SW,,
i=1

WIW=l <« WW=6 VY1<ij<k.

@ Therefore, (10) is equivalent to
K

max WTSW,, subjectto W, 'W,=4d;, V1<ij<k.
MA““,W&eRd;E; i i ] i J ij S L s
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Maximization task

k

WTSW;, subjectto W' W, =4;, V1<ij<k. (11
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Maximization task

k

WTSW;, subjectto W' W, =4;, V1<ij<k. (11

Q@ E=1%" (x—X)(x—x)T is symmetric.

~n
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Maximization task

k

WTSW;, subjectto W' W, =4;, V1<ij<k. (11

Q@ E=1%" (x—X)(x—x)T is symmetric.

~n

@ I is semi-positive definite, since
1 n
vy = - 21: vIi(x—X)(x—X%)Tv=— Z (xi—x)"v[?>0, VveR?.
P

Eigenvalues of ¥ are real and non-negative.
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Maximization task

k

WTSW;, subjectto W/ W, =6;, V1<ij<k. 11

Q@ E=137,(x—%(x—X)" is symmetric.

@ I is semi-positive definite, since
1« 1 <
vy = - 21: vIi(x—X)(x—X%)Tv=— 2 (xi—x)"v[?>0, VveR?.
1= 1=
Eigenvalues of ¥ are real and non-negative.

@ The maximum of (11) is achieved when W, ..., W are the k (pairwise
orthogonal and normalized) eigenvectors of X corresponding to the
largest k eigenvalues.
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PCA algorithm

Based on previous analysis, we summarize the algorithm of PCA as follows.
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PCA algorithm

Based on previous analysis, we summarize the algorithm of PCA as follows.

@ Compute S =137 (xi — X)(x; — X)T, where x = 1 "7 x;.

@ Compute eigenvectors Wi, ..., Wi corresponding to the k largest
eigenvalues of 2, so that W." W, = §; for i,j = 1,... k.

© Let W e R9*¥ be the matrix whose column vectors are W, ..., Wk.
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PCA algorithm

Based on previous analysis, we summarize the algorithm of PCA as follows.

@ Compute S =137 (xi — X)(x; — X)T, where x = 1 "7 x;.

@ Compute eigenvectors Wi, ..., Wi corresponding to the k largest
eigenvalues of 2, so that W." W, = §; for i,j = 1,... k.

© Let W e R9*¥ be the matrix whose column vectors are W, ..., Wk.

Once W is computed, we obtain the linear projection

f(x)= WWT(x —%)+ X%, xcR?.

22/30



PCA algorithm by SVD decomposition

@ Data matrix X € R™¢ whose ith row is x; — X. Then,

s 1
n <
i=1

. o o L
Z(x,-—x)(x,-—x) :EX X.
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PCA algorithm by SVD decomposition

@ Data matrix X € R™¢ whose ith row is x; — X. Then,

n

- N RV
Z(x,-—x)(x,-—x) _EX X.

i=1

g1
n

@ SVD decomposition of X = UAV'T, where
Q@ UcR™"satisfies U U = I,
@ A e R™is arectangular diagonal matrix with positive numbers
Q@ V c R satisfies V'V = 1.
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PCA algorithm by SVD decomposition

@ Data matrix X € R™¢ whose ith row is x; — X. Then,

n

- N RV
Z(x,-—x)(x,-—x) _EX X.

i=1

g1
n

@ SVD decomposition of X = UAV'T, where
Q@ UcR™"satisfies U U = I,
@ A e R™is arectangular diagonal matrix with positive numbers
Q@ V c R satisfies V'V = 1.

Q@ £ =1XTX=1V(ATA)VT, where ATA € R9*9 s a diagonal matrix.
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PCA algorithm by SVD decomposition

@ Data matrix X € R™¢ whose ith row is x; — X. Then,

n

- N RV
Z(x,-—x)(x,-—x) _EX X.

i=1

g1
n

@ SVD decomposition of X = UAV'T, where
@ U e R™"satisfies UT U = I,
@ A € R™Y s a rectangular diagonal matrix with positive numbers
@ V e R satisfies V' V = I,.

Q@ £ =1XTX=1V(ATA)VT, where ATA € R9*9 s a diagonal matrix.

Therefore, we can construct W by selecting column vectors of V
corresponding to the k largest singular values.
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Part 3: Autoencoders
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Autoencoders

@ Autoencoders find a low-dimensional representation of data using a
nonlinear projection ¢ : RY — RX.
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Autoencoders

@ Autoencoders find a low-dimensional representation of data using a
nonlinear projection ¢ : RY — RX.

@ Dimension k: latent dimension or bottleneck dimension.
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Autoencoders

@ Autoencoders find a low-dimensional representation of data using a
nonlinear projection ¢ : RY — RX.

@ Dimension k: latent dimension or bottleneck dimension.

© Autoencoder is a function of the form f = p o ¢, where ¢ : RY — R is an
encoder and ¢ : R¥ — R is a decoder.
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Autoencoders

@ Autoencoders find a low-dimensional representation of data using a
nonlinear projection ¢ : RY — RX.

@ Dimension k: latent dimension or bottleneck dimension.

© Autoencoder is a function of the form f = p o ¢, where ¢ : RY — R is an
encoder and ¢ : R¥ — R is a decoder.

@ The autoencoder is optimized by minimizing the reconstruction loss

£6:9) = [ 1€00) = X o = Burlilel) =, (12)

where p is the data distribution.
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Autoencoders and PCA

@ Given the data set D = {xq,..., X,}, the empirical loss function is

£(ee) = 137 le(eln) — xiP
i=1
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Autoencoders and PCA

@ Given the data set D = {xq,..., X,}, the empirical loss function is
Z lp(€(xi)) — xil

@ PCA is recovered, with a linear encoder and a linear decoder chosen as
X)=WT'x, o(z)=Wz+b,
where W € RO% b e R and WTW = Ix.
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Autoencoders and PCA

@ Given the data set D = {xq,..., X,}, the empirical loss function is
Z lp(€(xi)) — xil

@ PCA is recovered, with a linear encoder and a linear decoder chosen as
§x)=W"x, o(z)=Wz+b,
where W € RO% b e R and WTW = Ix.

@ In general, learning autoencoders can be viewed as a nonlinear
generalization of PCA.
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lllustration

d=2and k = 1. Inthis case, ¢ : R?> - Rand ¢y : R — R?,
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Characterization

We want to study the minimization task with loss

mEin m;n Exp|p(£(x)) — x[?.
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Characterization
We want to study the minimization task with loss

mEin mwin]EXN#|go(§(X)) —x[?. (13)

We use the following two facts.
@ Law of total expectation:

B (9600)) ~ XI?) = Bz [Bae (J600) = xP | €0) = 2) |

where 1 is the distribution of z = £(x).
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Characterization
We want to study the minimization task with loss

mEin mwin Exp|p(£(x)) — x[?.

We use the following two facts.
@ Law of total expectation:

Exup (19(600)) = X) = Epn [Ean (10(600)) — xI2 | €(x

where 1 is the distribution of z = £(x).

@ For afixed z € R¥, we have

min ]EXNM(|X’ — x? ‘ £(x) = z) = Vary~, (x | £(x)

x'eR

and the minimum is attained when x’ = E,.,(x | £(x) = 2).

)=2)].

= 2),
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Characterization (1)
By first optimizing ¢, we derive

min min Ex. |(§(6)) x[?
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Characterization (1)
By first optimizing ¢, we derive
min min Ex~ . |o(&(X)) — X|2
& ¢

= min min B s B (1p(606)) — X | €0x) = 2)]
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Characterization (1)
By first optimizing ¢, we derive
min min Ex. |(§(6) = xI°
= min min Ez.z [Ex(|(600) = X [ €00) = 2)

= minminE,_z [EM (|¢(z) — x| e(x) = z)]

[
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Characterization (1)
By first optimizing ¢, we derive
min min Ex, o(€(x)) — x|
= m{in mJn Ezop [EXNH (|<p(€(X)) - X‘Z ’£(X) = Z)}
=minmin EZNﬁ |:Ex~;4 (|§0(Z) - X|2 ! é(X) = Z):|

[

=min B~z { min [Exw (J0(2) — xI* [ €0x) = 2) ] }
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Characterization (1)
By first optimizing ¢, we derive
min min Exu|o(€(x)) — x|?
= minmin Bz B (J£(600) — %P |€06) = 2)]
= min min B [Exes (16(2) = X | £00) = 2]
= min Bz { min (e (10(2) x| €00 = 2) ]}

= m{in Bz [Varxu (X £(x) = 2)] .
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min min Ex. |(§(6) = xI°
= minmin Bz B (J£(600) — %P |€06) = 2)]
= minmin Ez.z [Exe(|10(2) = x| €(x) = 2]
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Characterization (1)
By first optimizing ¢, we derive
min min Exu|o(€(x)) — x|?
= minmin Bz B (J£(600) — %P |€06) = 2)]
= min min B [Exes (16(2) = X | £00) = 2]
= min Bz { min (e (10(2) x| €00 = 2) ]}

= m{in Bz [Varxu (X £(x) = 2)] .

Proposition

mgin m(pin Ex~p|p(€(X)) — X2 = mgin E,z[Var(x|£(x) = 2)] .
Moreover, for a fixed encoder &, the optimal decoder is given by

0e(2) = Exeu(x|E(x) = 2), VzeRE (14)




Characterization (2)

By first optimizing &, we directly get the following result.

Proposition

mJn mgin Exp|(€(X)) — X
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Characterization (2)

By first optimizing &, we directly get the following result.

Proposition

mJn mgin Ex~ple(€(x)) — x|2 = m@in Ex~plo(éo(X)) — x|2 ,
where

€,(x) = arg min |p(2) — x|, Vx €RY. (15)
ZERK
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Characterization (2)

By first optimizing &, we directly get the following result.

Proposition

min min Ey.,,|£(§(X)) — X[ = min By |p(€5(X)) — X%,

where
€,(x) = arg min |p(2) — x|, Vx €RY. (15)
ZERK

To summarize, the optimal autoencoder satisfies the self-consistent condition:
@ ¥(2) = Exu(x]é(x) = 2), zeR"
Q &(x) = argminycpr |p(2) — x|, x €R7
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