Transition paths: zero-temperature limit

July 02, 2025

- Submission deadline: 23.07.2025
- Course project: Select one topic to conduct numerical experiment, and write a short report. Submission deadline: 27.07.2025
- **o** give a 10-15 min **presentation**. Date: 11.07.2025 or 18.07.2025.

Machine learning

Supervised learning

Dataset contains features and labels: $\mathcal{D} = \{(x_n, y_n)\}_{n=1}^N$.

- Classification (pattern recognition)
- 2 Regression

Onsupervised learning

Data: $D = \{x_n\}_{n=1}^N$.

- o clustering: k-means
- discovering latent structure: PCA
- generative modeling

Part 1: Transition paths

() Brownian dynamics in \mathbb{R}^d

$$dX_t = -\nabla V(X_t) dt + \sqrt{2\epsilon} dB_t, \quad t \ge 0,$$

where $\epsilon > 0$ is a constant.

• Brownian dynamics in \mathbb{R}^d

$$dX_t = -\nabla V(X_t) dt + \sqrt{2\epsilon} dB_t, \quad t \ge 0,$$

where $\epsilon > 0$ is a constant.

Invariant probability density is

$$\pi(x)=\frac{1}{Z}e^{-\frac{1}{\epsilon}V(x)},$$

where $Z = \int_{\mathbb{R}^d} e^{-\frac{1}{\epsilon}V(x)} dx$ is a normalizing constant.

• Brownian dynamics in \mathbb{R}^d

$$dX_t = -\nabla V(X_t) dt + \sqrt{2\epsilon} dB_t, \quad t \ge 0,$$

where $\epsilon > 0$ is a constant.

Invariant probability density is

$$\pi(x)=\frac{1}{Z}e^{-\frac{1}{\epsilon}V(x)},$$

where $Z = \int_{\mathbb{R}^d} e^{-\frac{1}{\epsilon}V(x)} dx$ is a normalizing constant.

Assume that V has multiple local minima.

Low temperature regime: $\epsilon \ll 1$

Brownian dynamics :

$$dX_t = -
abla V(X_t) \, dt + \sqrt{2\epsilon} dB_t$$
 .

Low temperature regime: $\epsilon \ll 1$

Brownian dynamics :

$$dX_t = -
abla V(X_t) \, dt + \sqrt{2\epsilon} dB_t$$
 .

Low temperature regime: $\epsilon \ll 1$

Brownian dynamics :

$$dX_t = -\nabla V(X_t) dt + \sqrt{2\epsilon} dB_t$$

Small perturbation of noise.

- Related terminology:
 - Iow-temperature regime
 - 2 zero-temperature limit

Basin of attraction

Let $a \in \mathbb{R}^d$ be a local minimum point of V.

Basin of attraction

Let $a \in \mathbb{R}^d$ be a local minimum point of V.

Definition

Define the set

$$\Omega(a) = \big\{ x \in \mathbb{R}^d \, \big| \, \lim_{t \to +\infty} X(t; x) = a \big\},\,$$

Let $a \in \mathbb{R}^d$ be a local minimum point of *V*.

Definition

Define the set

$$\Omega(a) = \big\{ x \in \mathbb{R}^d \, \big| \, \lim_{t \to +\infty} X(t; x) = a \big\},\,$$

where $X(t;x):[0,+\infty)\times \mathbb{R}^d
ightarrow \mathbb{R}^d$ is the flow map of the ODE

$$\frac{dX(t;x)}{dt} = -\nabla V(X(t;x)), \quad X(0;x) = x.$$

When $\epsilon=$ 0, the system satisfies the ODE

$$\frac{dX_t}{dt} = -\nabla V(X_t) \,. \tag{1}$$

When $\epsilon=$ 0, the system satisfies the ODE

$$\frac{dX_t}{dt} = -\nabla V(X_t). \tag{1}$$

When $\epsilon = 0$, the system satisfies the ODE

$$\frac{dX_t}{dt} = -\nabla V(X_t). \tag{1}$$

• $V(X_t)$ decays in time.

 $im_{t\to\infty} X_t = a, once X_0 \in \Omega(a).$

When $\epsilon > 0$, $dX_t = -\nabla V(X_t) dt + \sqrt{2\epsilon} dB_t$.

When $\epsilon > 0$, $dX_t = -\nabla V(X_t) dt + \sqrt{2\epsilon} dB_t$.

• Invariant probability density: $\pi(x) = \frac{1}{Z}e^{-\frac{1}{\epsilon}V(x)}$.

When $\epsilon > 0$, $dX_t = -\nabla V(X_t) dt + \sqrt{2\epsilon} dB_t$.

- Invariant probability density: $\pi(x) = \frac{1}{Z}e^{-\frac{1}{\epsilon}V(x)}$.
- When V has multiple local minima, each local minimum points will be visited infinitely many times.

When $\epsilon > 0$, $dX_t = -\nabla V(X_t) dt + \sqrt{2\epsilon} dB_t$.

- Invariant probability density: $\pi(x) = \frac{1}{Z}e^{-\frac{1}{\epsilon}V(x)}$.
- When V has multiple local minima, each local minimum points will be visited infinitely many times.
- For most of the time, the system is attracted to vicinity of local minimum points, but transitions happen occasionally.

1 Two local minimum points $a, b \in \mathbb{R}^d$.

- Two local minimum points $a, b \in \mathbb{R}^d$.
- **2** separatrix: $\partial \Omega(a) \cap \partial \Omega(b) \neq \emptyset$.

- Two local minimum points $a, b \in \mathbb{R}^d$.
- **2** separatrix: $\partial \Omega(a) \cap \partial \Omega(b) \neq \emptyset$.
- Transitions from $\Omega(a)$ to $\Omega(b)$ are rare events, when $\epsilon \ll 1$.

- Two local minimum points $a, b \in \mathbb{R}^d$.
- **2** separatrix: $\partial \Omega(a) \cap \partial \Omega(b) \neq \emptyset$.
- **③** Transitions from $\Omega(a)$ to $\Omega(b)$ are rare events, when $\epsilon \ll 1$.
- Sumerical simulation of transitions becomes computationally challenging.

- Two local minimum points $a, b \in \mathbb{R}^d$.
- **2** separatrix: $\partial \Omega(a) \cap \partial \Omega(b) \neq \emptyset$.
- **③** Transitions from $\Omega(a)$ to $\Omega(b)$ are rare events, when $\epsilon \ll 1$.
- Output: Numerical simulation of transitions becomes computationally challenging.
- Goal: characterize transition events
 e.g. identify the most probable transition pathways.

Example

Müller-Brown potential

Part 2: Minimal energy path (MEP)

• Brownian dynamics: $dX_t^{\epsilon} = -\nabla V(X_t^{\epsilon}) dt + \sqrt{2\epsilon} dB_t$.

- Brownian dynamics: $dX_t^{\epsilon} = -\nabla V(X_t^{\epsilon}) dt + \sqrt{2\epsilon} dB_t$.
- **2** As $\epsilon \to 0$, the probability of a path is determined by **action functional**.

- Brownian dynamics: $dX_t^{\epsilon} = -\nabla V(X_t^{\epsilon}) dt + \sqrt{2\epsilon} dB_t$.
- **2** As $\epsilon \to 0$, the probability of a path is determined by **action functional**.
- Given T > 0, the space of transition paths:

$$\mathbf{P}_{\mathcal{T}} = \Big\{ \varphi \, \Big| \, \varphi \in C([0, T], \mathbb{R}^d), \, \varphi(0) = a, \, \varphi(T) = b \Big\}.$$

- Brownian dynamics: $dX_t^{\epsilon} = -\nabla V(X_t^{\epsilon}) dt + \sqrt{2\epsilon} dB_t$.
- **2** As $\epsilon \to 0$, the probability of a path is determined by **action functional**.
- Given T > 0, the space of transition paths:

$$\mathbf{P}_{\mathcal{T}} = \Big\{ \varphi \, \Big| \, \varphi \in C([0, T], \mathbb{R}^d), \, \varphi(0) = a, \, \varphi(T) = b \Big\}.$$

Then, for $B \subset \mathbf{P}_T$,

 $\lim_{\epsilon \to 0} \epsilon {\rm ln} P(B)$

- Brownian dynamics: $dX_t^{\epsilon} = -\nabla V(X_t^{\epsilon}) dt + \sqrt{2\epsilon} dB_t$.
- **2** As $\epsilon \to 0$, the probability of a path is determined by **action functional**.
- Given T > 0, the space of transition paths:

$$\mathbf{P}_{\mathcal{T}} = \Big\{ \varphi \, \Big| \, \varphi \in \mathcal{C}([0, T], \mathbb{R}^d), \, \varphi(0) = a, \, \varphi(\mathcal{T}) = b \Big\}.$$

Then, for $B \subset \mathbf{P}_T$,

$$\lim_{\epsilon \to 0} \epsilon \ln P(B) = -\min_{\varphi \in B} I_T(\varphi)$$

- Brownian dynamics: $dX_t^{\epsilon} = -\nabla V(X_t^{\epsilon}) dt + \sqrt{2\epsilon} dB_t$.
- **2** As $\epsilon \to 0$, the probability of a path is determined by **action functional**.
- Given T > 0, the space of transition paths:

$$\mathbf{P}_{T} = \Big\{ \varphi \, \Big| \, \varphi \in \mathcal{C}([0, T], \mathbb{R}^{d}), \, \varphi(0) = a, \, \varphi(T) = b \Big\}.$$

Then, for $B \subset \mathbf{P}_T$,

$$\lim_{\epsilon \to 0} \epsilon \ln \mathcal{P}(\mathcal{B}) = -\min_{\varphi \in \mathcal{B}} I_{\mathcal{T}}(\varphi) \iff \mathcal{P}(\mathcal{B}) \approx \exp\left(-\frac{1}{\epsilon} \min_{\varphi \in \mathcal{B}} I_{\mathcal{T}}(\varphi)\right).$$

- Brownian dynamics: $dX_t^{\epsilon} = -\nabla V(X_t^{\epsilon}) dt + \sqrt{2\epsilon} dB_t$.
- **2** As $\epsilon \to 0$, the probability of a path is determined by **action functional**.
- Given T > 0, the space of transition paths:

$$\mathbf{P}_{\mathcal{T}} = \Big\{ \varphi \, \Big| \, \varphi \in \mathcal{C}([0, T], \mathbb{R}^d), \, \varphi(0) = a, \, \varphi(T) = b \Big\}.$$

Then, for $B \subset \mathbf{P}_T$,

$$\lim_{\epsilon \to 0} \epsilon \ln P(B) = -\min_{\varphi \in B} I_T(\varphi) \iff P(B) \approx \exp\left(-\frac{1}{\epsilon} \min_{\varphi \in B} I_T(\varphi)\right).$$

Action functional:

$$I_{T}(\varphi) = rac{1}{4} \int_{0}^{T} \left| \dot{\varphi}(t) +
abla V(\varphi(t))
ight|^{2} dt$$

Similarly, on $[T_1, T_2]$, where $-\infty < T_1 < T_2 < +\infty$, the action functional is

$$I_{[T_1,T_2]}(\varphi) = \frac{1}{4} \int_{T_1}^{T_2} \left| \dot{\varphi}(t) + \nabla V(\varphi(t)) \right|^2 dt \,,$$

among all paths which satisfy

$$\varphi(T_1) = a \text{ and } \varphi(T_2) = b.$$
Path φ : $\varphi(T_1) = a$, $\varphi(T_2) = b$, and $\varphi(T_*) \in \partial \Omega(a) \cap \partial \Omega(b)$, $T_* \in [T_1, T_2]$.

 $I_{[T_1,T_2]}(\varphi)$

Path
$$\varphi$$
: $\varphi(T_1) = a$, $\varphi(T_2) = b$, and $\varphi(T_*) \in \partial \Omega(a) \cap \partial \Omega(b)$, $T_* \in [T_1, T_2]$.
$$I_{[T_1, T_2]}(\varphi) = \frac{1}{4} \int_{T_1}^{T^*} \left| \dot{\varphi}(t) + \nabla V(\varphi(t)) \right|^2 dt + \frac{1}{4} \int_{T^*}^{T_2} \left| \dot{\varphi}(t) + \nabla V(\varphi(t)) \right|^2 dt$$

Path φ : $\varphi(T_1) = a$, $\varphi(T_2) = b$, and $\varphi(T_*) \in \partial\Omega(a) \cap \partial\Omega(b)$, $T_* \in [T_1, T_2]$. $I_{[T_1, T_2]}(\varphi) = \frac{1}{4} \int_{T_1}^{T^*} \left| \dot{\varphi}(t) + \nabla V(\varphi(t)) \right|^2 dt + \frac{1}{4} \int_{T^*}^{T_2} \left| \dot{\varphi}(t) + \nabla V(\varphi(t)) \right|^2 dt$ $= \frac{1}{4} \int_{T_1}^{T^*} \left| \dot{\varphi}(t) - \nabla V(\varphi(t)) \right|^2 dt + \frac{1}{4} \int_{T^*}^{T_2} \left| \dot{\varphi}(t) + \nabla V(\varphi(t)) \right|^2 dt$ $+ \int_{T_1}^{T^*} \dot{\varphi}(t) \cdot \nabla V(\varphi(t)) dt$

Path
$$\varphi$$
: $\varphi(T_1) = a$, $\varphi(T_2) = b$, and $\varphi(T_*) \in \partial\Omega(a) \cap \partial\Omega(b)$, $T_* \in [T_1, T_2]$.

$$I_{[T_1, T_2]}(\varphi) = \frac{1}{4} \int_{T_1}^{T^*} \left| \dot{\varphi}(t) + \nabla V(\varphi(t)) \right|^2 dt + \frac{1}{4} \int_{T^*}^{T_2} \left| \dot{\varphi}(t) + \nabla V(\varphi(t)) \right|^2 dt$$

$$= \frac{1}{4} \int_{T_1}^{T^*} \left| \dot{\varphi}(t) - \nabla V(\varphi(t)) \right|^2 dt + \frac{1}{4} \int_{T^*}^{T_2} \left| \dot{\varphi}(t) + \nabla V(\varphi(t)) \right|^2 dt$$

$$+ \int_{T_1}^{T^*} \dot{\varphi}(t) \cdot \nabla V(\varphi(t)) dt$$

$$\geq \int_{T_1}^{T^*} \dot{\varphi}(t) \cdot \nabla V(\varphi(t)) dt$$

F

Path
$$\varphi$$
: $\varphi(T_1) = a$, $\varphi(T_2) = b$, and $\varphi(T_*) \in \partial\Omega(a) \cap \partial\Omega(b)$, $T_* \in [T_1, T_2]$.

$$I_{[T_1, T_2]}(\varphi) = \frac{1}{4} \int_{T_1}^{T^*} \left| \dot{\varphi}(t) + \nabla V(\varphi(t)) \right|^2 dt + \frac{1}{4} \int_{T^*}^{T_2} \left| \dot{\varphi}(t) + \nabla V(\varphi(t)) \right|^2 dt$$

$$= \frac{1}{4} \int_{T_1}^{T^*} \left| \dot{\varphi}(t) - \nabla V(\varphi(t)) \right|^2 dt + \frac{1}{4} \int_{T^*}^{T_2} \left| \dot{\varphi}(t) + \nabla V(\varphi(t)) \right|^2 dt$$

$$+ \int_{T_1}^{T^*} \dot{\varphi}(t) \cdot \nabla V(\varphi(t)) dt$$

$$\geq \int_{T_1}^{T^*} \dot{\varphi}(t) \cdot \nabla V(\varphi(t)) dt$$

$$= V(\varphi(T^*)) - V(\varphi(T_1))$$

Path
$$\varphi$$
: $\varphi(T_1) = a$, $\varphi(T_2) = b$, and $\varphi(T_*) \in \partial\Omega(a) \cap \partial\Omega(b)$, $T_* \in [T_1, T_2]$.

$$I_{[T_1, T_2]}(\varphi) = \frac{1}{4} \int_{T_1}^{T^*} \left| \dot{\varphi}(t) + \nabla V(\varphi(t)) \right|^2 dt + \frac{1}{4} \int_{T^*}^{T_2} \left| \dot{\varphi}(t) + \nabla V(\varphi(t)) \right|^2 dt$$

$$= \frac{1}{4} \int_{T_1}^{T^*} \left| \dot{\varphi}(t) - \nabla V(\varphi(t)) \right|^2 dt + \frac{1}{4} \int_{T^*}^{T_2} \left| \dot{\varphi}(t) + \nabla V(\varphi(t)) \right|^2 dt$$

$$+ \int_{T_1}^{T^*} \dot{\varphi}(t) \cdot \nabla V(\varphi(t)) dt$$

$$\geq \int_{T_1}^{T^*} \dot{\varphi}(t) \cdot \nabla V(\varphi(t)) dt$$

$$= V(\varphi(T^*)) - V(\varphi(T_1))$$

$$\geq V(c) - V(a) =: \Delta V,$$
where $c = \arg \min_{x \in \partial\Omega(a) \cap \partial\Omega(b)} V(x)$.

Path
$$\varphi$$
: $\varphi(T_1) = a$, $\varphi(T_2) = b$, and $\varphi(T_*) \in \partial\Omega(a) \cap \partial\Omega(b)$, $T_* \in [T_1, T_2]$.

$$I_{[T_1, T_2]}(\varphi) = \frac{1}{4} \int_{T_1}^{T^*} \left| \dot{\varphi}(t) + \nabla V(\varphi(t)) \right|^2 dt + \frac{1}{4} \int_{T^*}^{T_2} \left| \dot{\varphi}(t) + \nabla V(\varphi(t)) \right|^2 dt$$

$$= \frac{1}{4} \int_{T_1}^{T^*} \left| \dot{\varphi}(t) - \nabla V(\varphi(t)) \right|^2 dt + \frac{1}{4} \int_{T^*}^{T_2} \left| \dot{\varphi}(t) + \nabla V(\varphi(t)) \right|^2 dt$$

$$+ \int_{T_1}^{T^*} \dot{\varphi}(t) \cdot \nabla V(\varphi(t)) dt$$

$$\geq \int_{T_1}^{T^*} \dot{\varphi}(t) \cdot \nabla V(\varphi(t)) dt$$

$$= V(\varphi(T^*)) - V(\varphi(T_1))$$

$$\geq V(c) - V(a) =: \Delta V,$$
where $c = \arg \min_{x \in \partial\Omega(a) \cap \partial\Omega(b)} V(x)$.

Therefore, the lower bound of action is ΔV .

() On the other hand, there exists a path φ , which satisfies

$$\varphi(T_1) = a, \quad \varphi(T^*) = c, \quad \varphi(T_2) = b,$$

$$\dot{\varphi}(t) = \begin{cases} \nabla V(\varphi(t)), & T_1 < t < T^*, \\ -\nabla V(\varphi(t)), & T^* < t < T_2. \end{cases}$$

As $T_1 \to -\infty, T_2 \to +\infty$, the lower bound of the action will be achieved by this path.

Oharacterization of MEP:

$$\dot{\varphi}(t) \parallel \nabla V(\varphi(t)), \quad \text{or} \quad (\nabla V)^{\perp}(\varphi(t)) = \mathbf{0}.$$

() On the other hand, there exists a path φ , which satisfies

$$\varphi(T_1) = \mathbf{a}, \quad \varphi(T^*) = \mathbf{c}, \quad \varphi(T_2) = \mathbf{b},$$
$$\dot{\varphi}(t) = \begin{cases} \nabla V(\varphi(t)), & T_1 < t < T^*, \\ -\nabla V(\varphi(t)), & T^* < t < T_2. \end{cases}$$

() On the other hand, there exists a path φ , which satisfies

$$\begin{aligned} \varphi(T_1) &= a, \quad \varphi(T^*) = c, \quad \varphi(T_2) = b, \\ \dot{\varphi}(t) &= \begin{cases} \nabla V(\varphi(t)), & T_1 < t < T^*, \\ -\nabla V(\varphi(t)), & T^* < t < T_2. \end{cases} \end{aligned}$$

As $T_1 \to -\infty$, $T_2 \to +\infty$, the lower bound of the action will be achieved by this path.

() On the other hand, there exists a path φ , which satisfies

$$\varphi(T_1) = a, \quad \varphi(T^*) = c, \quad \varphi(T_2) = b,$$

$$\dot{\varphi}(t) = \begin{cases} \nabla V(\varphi(t)), & T_1 < t < T^*, \\ -\nabla V(\varphi(t)), & T^* < t < T_2. \end{cases}$$

As $T_1 \to -\infty, T_2 \to +\infty$, the lower bound of the action will be achieved by this path.

Characterization of MEP:

$$\dot{\varphi}(t) \parallel \nabla V(\varphi(t)), \quad \text{or} \quad (\nabla V)^{\perp}(\varphi(t)) = \mathbf{0}.$$

Probability of transitions

- Let B be a set of transition paths containing the MEP.
- 2 Energy barrier: $\Delta V := V(c) V(a)$.

- Let B be a set of transition paths containing the MEP.
- Senergy barrier: $\Delta V := V(c) V(a)$.

3

$$P(B) \approx \exp\left(-\frac{1}{\epsilon}\min_{\varphi \in B}I_{T}(\varphi)\right) = \exp\left(-\frac{\Delta V}{\epsilon}\right)$$

- Let B be a set of transition paths containing the MEP.
- 2 Energy barrier: $\Delta V := V(c) V(a)$.

3

$$P(B) \approx \exp\left(-\frac{1}{\epsilon}\min_{\varphi \in B}I_T(\varphi)\right) = \exp\left(-\frac{\Delta V}{\epsilon}\right)$$

 \implies MEP is the **most probable** transition path when $\epsilon \rightarrow 0$.

Example

Part 3: String method

String method

String method is a numerical method for computing the MEP.

String method

String method is a numerical method for computing the MEP.

Input:

- Two local minimum points *a* and *b*.
- 2 Initial path $\varphi(s)$, where $s \in [0, 1]$, such that $\varphi(0) = a$ and $\varphi(1) = b$.

String method is a numerical method for computing the MEP.

Input:

- Two local minimum points *a* and *b*.
- 2 Initial path $\varphi(s)$, where $s \in [0, 1]$, such that $\varphi(0) = a$ and $\varphi(1) = b$.

Method: evolves each state $\varphi(s)$ according to

$$\frac{dX_t}{dt} = -\nabla V(X(t)),$$

String method is a numerical method for computing the MEP.

Input:

- Two local minimum points *a* and *b*.
- 2 Initial path $\varphi(s)$, where $s \in [0, 1]$, such that $\varphi(0) = a$ and $\varphi(1) = b$.

Method: evolves each state $\varphi(s)$ according to

$$\frac{dX_t}{dt} = -\nabla V(X(t))\,,$$

while keeping $|\dot{\varphi}(s)|$ to be uniform, i.e, $|\dot{\varphi}(s)| \equiv C$, where C > 0.

Assume the path converges to a limiting path φ . This implies:

Assume the path converges to a limiting path φ . This implies:

• φ is invariant under $\frac{dX_t}{dt} = -\nabla V(X_t)$, though each $\varphi(s)$ may move along φ .

Assume the path converges to a limiting path φ . This implies:

- φ is invariant under $\frac{dX_t}{dt} = -\nabla V(X_t)$, though each $\varphi(s)$ may move along φ .
- **2** $\nabla V(\varphi(s))$ is parallel to the tangent direction $\dot{\varphi}(s)$.

Assume the path converges to a limiting path φ . This implies:

- φ is invariant under $\frac{dX_t}{dt} = -\nabla V(X_t)$, though each $\varphi(s)$ may move along φ .
- **2** $\nabla V(\varphi(s))$ is parallel to the tangent direction $\dot{\varphi}(s)$.
- **③** Therefore, φ is a MEP.

Let $\varphi_0^k = a, \varphi_1^k, \dots, \varphi_N^k = b \in \mathbb{R}^d$ denote the discrete states at *k*th iteration.

Let $\varphi_0^k = a, \varphi_1^k, \dots, \varphi_N^k = b \in \mathbb{R}^d$ denote the discrete states at *k*th iteration.

Update:

$$\varphi_i^* = -\tau \nabla V(\varphi_i^k) + \varphi_i^k, \ i = 0, 1, 2, \cdots, N,$$

where τ is the step-size.

Let $\varphi_0^k = a, \varphi_1^k, \dots, \varphi_N^k = b \in \mathbb{R}^d$ denote the discrete states at *k*th iteration.

Update:

$$arphi_i^* = - au
abla oldsymbol{V}(arphi_i^k) + arphi_i^k, \;\; i = 0, 1, 2, \cdots, N,$$

where τ is the step-size.

Reparametrization.

Let $\varphi_0^k = a, \varphi_1^k, \dots, \varphi_N^k = b \in \mathbb{R}^d$ denote the discrete states at *k*th iteration.

Update:

$$\varphi_i^* = -\tau \nabla V(\varphi_i^k) + \varphi_i^k, \ i = 0, 1, 2, \cdots, N_i$$

where τ is the step-size.

2 Reparametrization. Obtain new state φ_i^{k+1} by linear interpolation:

$$\varphi_{i}^{k+1} = \frac{L_{j+1}^{*} - L_{i}}{L_{j+1}^{*} - L_{j}^{*}}\varphi_{j}^{*} + \frac{L_{i} - L_{j}^{*}}{L_{j+1}^{*} - L_{j}^{*}}\varphi_{j+1}^{*},$$

Let $\varphi_0^k = a, \varphi_1^k, \dots, \varphi_N^k = b \in \mathbb{R}^d$ denote the discrete states at *k*th iteration.

Update:

$$\varphi_i^* = -\tau \nabla V(\varphi_i^k) + \varphi_i^k, \ i = 0, 1, 2, \cdots, N$$

where τ is the step-size.

2 Reparametrization. Obtain new state φ_i^{k+1} by linear interpolation:

$$\varphi_i^{k+1} = \frac{L_{j+1}^* - L_i}{L_{j+1}^* - L_j^*} \varphi_j^* + \frac{L_i - L_j^*}{L_{j+1}^* - L_j^*} \varphi_{j+1}^*,$$

where $L_{j}^{*} < L_{j} \le L_{j+1}^{*}$, $L_{0}^{*} = L_{0} = 0$, and

$$L_{i}^{*} = \frac{\sum_{j=0}^{i-1} |\varphi_{j+1}^{*} - \varphi_{j}^{*}|}{\sum_{j=0}^{N-1} |\varphi_{j+1}^{*} - \varphi_{j}^{*}|}, \quad L_{i} = \frac{i}{N}, \quad i = 1, \cdots, N.$$

Example

Figure: Left: init path. Middle: path after 30 iterations. Right: path after 30 iterations without reparametrization.

Part 4: Computing saddle point

Saddle point

On the one hand, recall the lower bound of action:
On the one hand, recall the lower bound of action:

$$\begin{split} I_{[T_1,T_2]}(\varphi) &= \frac{1}{4} \int_{T_1}^{T^*} \left| \dot{\varphi}(t) + \nabla V(\varphi(t)) \right|^2 dt + \frac{1}{4} \int_{T^*}^{T_2} \left| \dot{\varphi}(t) + \nabla V(\varphi(t)) \right|^2 dt \\ &= \frac{1}{4} \int_{T_1}^{T^*} \left| \dot{\varphi}(t) - \nabla V(\varphi(t)) \right|^2 dt + \frac{1}{4} \int_{T^*}^{T_2} \left| \dot{\varphi}(t) + \nabla V(\varphi(t)) \right|^2 dt \\ &+ \int_{T_1}^{T^*} \dot{\varphi}(t) \cdot \nabla V(\varphi(t)) dt \\ &\geq \int_{T_1}^{T^*} \dot{\varphi}(t) \cdot \nabla V(\varphi(t)) dt \\ &= V(\varphi(T^*)) - V(\varphi(T_1)) \\ &\geq V(c) - V(a) =: \Delta V, \end{split}$$

On the one hand, recall the lower bound of action:

$$\begin{split} I_{[T_1, T_2]}(\varphi) &= \frac{1}{4} \int_{T_1}^{T^*} \left| \dot{\varphi}(t) + \nabla V(\varphi(t)) \right|^2 dt + \frac{1}{4} \int_{T^*}^{T_2} \left| \dot{\varphi}(t) + \nabla V(\varphi(t)) \right|^2 dt \\ &= \frac{1}{4} \int_{T_1}^{T^*} \left| \dot{\varphi}(t) - \nabla V(\varphi(t)) \right|^2 dt + \frac{1}{4} \int_{T^*}^{T_2} \left| \dot{\varphi}(t) + \nabla V(\varphi(t)) \right|^2 dt \\ &+ \int_{T_1}^{T^*} \dot{\varphi}(t) \cdot \nabla V(\varphi(t)) dt \\ &\geq \int_{T_1}^{T^*} \dot{\varphi}(t) \cdot \nabla V(\varphi(t)) dt \\ &= V(\varphi(T^*)) - V(\varphi(T_1)) \\ &\geq V(c) - V(a) =: \Delta V, \end{split}$$

where

$$c = \operatorname*{arg\,min}_{x \in \partial \Omega(a) \cap \partial \Omega(b)} V(x).$$

On the other hand, recall the characterization of MEP:

On the other hand, recall the characterization of MEP:

$$\varphi(T_1) = \mathbf{a}, \quad \varphi(T^*) = \mathbf{c}, \quad \varphi(T_2) = \mathbf{b},$$
$$\dot{\varphi}(t) = \begin{cases} \nabla V(\varphi(t)), & T_1 < t < T^*, \\ -\nabla V(\varphi(t)), & T^* < t < T_2. \end{cases}$$

On the other hand, recall the characterization of MEP:

$$\varphi(T_1) = \mathbf{a}, \quad \varphi(T^*) = \mathbf{c}, \quad \varphi(T_2) = \mathbf{b},$$
$$\dot{\varphi}(t) = \begin{cases} \nabla V(\varphi(t)), & T_1 < t < T^*, \\ -\nabla V(\varphi(t)), & T^* < t < T_2. \end{cases}$$

c is the state on the MEP with highest potential.

On the other hand, recall the characterization of MEP:

$$\varphi(T_1) = \mathbf{a}, \quad \varphi(T^*) = \mathbf{c}, \quad \varphi(T_2) = \mathbf{b},$$
$$\dot{\varphi}(t) = \begin{cases} \nabla V(\varphi(t)), & T_1 < t < T^*, \\ -\nabla V(\varphi(t)), & T^* < t < T_2. \end{cases}$$

- c is the state on the MEP with highest potential.
- It tells whether the transition occurs or not.

Example

Therefore, c is an index-1 critical point of potential V.

Therefore, c is an index-1 critical point of potential V.

Therefore, c is an index-1 critical point of potential V.

 $\nabla V(c) = 0.$

Solution V(c) has d - 1 positive eigenvalues and one negative eigenvalue.

 $\dot{\varphi}(\boldsymbol{s}) \parallel \nabla V(\varphi(\boldsymbol{s}))$

MEP:

 $\dot{\varphi}(s) \parallel \nabla V(\varphi(s)) \implies \dot{\varphi}(s) = -C(s) \nabla V(\varphi(s)),$ where C(s) < 0 for $s \in (0, s^*)$ and C(s) > 0 for $s \in (s^*, 1).$

• MEP: $\dot{\varphi}(s) \parallel \nabla V(\varphi(s)) \implies \dot{\varphi}(s) = -C(s) \nabla V(\varphi(s)),$ where C(s) < 0 for $s \in (0, s^*)$ and C(s) > 0 for $s \in (s^*, 1).$

Solution Solution Solution (C) = $\varphi(s^*)$ and using $\nabla V(c) = 0$,

$$\implies \dot{arphi}(s) = -\mathcal{C}(s)\Delta s \mathcal{H}rac{arphi(s) - arphi(s^*)}{\Delta s} + \mathcal{O}(|arphi(s) - arphi(s^*)|^2),$$

• MEP: $\dot{\varphi}(s) \parallel \nabla V(\varphi(s)) \implies \dot{\varphi}(s) = -C(s) \nabla V(\varphi(s)),$ where C(s) < 0 for $s \in (0, s^*)$ and C(s) > 0 for $s \in (s^*, 1).$

Solution Expanding ∇V at $c = \varphi(s^*)$ and using $\nabla V(c) = 0$,

$$\implies \dot{\varphi}(s) = -C(s)\Delta s H \frac{\varphi(s) - \varphi(s^*)}{\Delta s} + O(|\varphi(s) - \varphi(s^*)|^2),$$

where $\Delta s = s - s^*$ and H = Hess V(c).

• MEP: $\dot{\varphi}(s) \parallel \nabla V(\varphi(s)) \implies \dot{\varphi}(s) = -C(s) \nabla V(\varphi(s)),$ where C(s) < 0 for $s \in (0, s^*)$ and C(s) > 0 for $s \in (s^*, 1).$

Solution 2 Sector 2

$$\implies \dot{\varphi}(s) = -C(s)\Delta s H \frac{\varphi(s) - \varphi(s^*)}{\Delta s} + O(|\varphi(s) - \varphi(s^*)|^2),$$

where $\Delta s = s - s^*$ and H = Hess V(c).

3 Let $s > s^*$ and $s \to s^*$, we get

$$H\dot{arphi}(oldsymbol{s}^*)=\mu\dot{arphi}(oldsymbol{s}^*)\,,\quad\mu<{\sf 0}\,.$$

• MEP: $\dot{\varphi}(s) \parallel \nabla V(\varphi(s)) \implies \dot{\varphi}(s) = -C(s) \nabla V(\varphi(s)),$ where C(s) < 0 for $s \in (0, s^*)$ and C(s) > 0 for $s \in (s^*, 1).$

Solution 2 Sector 2

$$\implies \dot{\varphi}(s) = -C(s)\Delta s H \frac{\varphi(s) - \varphi(s^*)}{\Delta s} + O(|\varphi(s) - \varphi(s^*)|^2),$$

where $\Delta s = s - s^*$ and H = Hess V(c).

• Let $s > s^*$ and $s \to s^*$, we get

$$H\dot{arphi}(oldsymbol{s}^*)=\mu\dot{arphi}(oldsymbol{s}^*)\,,\quad\mu<{\sf 0}\,.$$

Unit unstable direction: $\tau = \frac{\dot{\varphi}(s^*)}{|\dot{\varphi}(s^*)|}$.

Saddle point approximation

In string method, MEP is represented by finite discrete states $\varphi_0, \ldots, \varphi_N$.

Saddle point approximation

- In string method, MEP is represented by finite discrete states $\varphi_0, \ldots, \varphi_N$.
- 2 The state φ_i with the highest potential gives an approximation of the saddle point.

Saddle point approximation

- In string method, MEP is represented by finite discrete states $\varphi_0, \ldots, \varphi_N$.
- 2 The state φ_i with the highest potential gives an approximation of the saddle point.
- The unstable direction can be approximated by

$$\tau_0 = \frac{\varphi_{i+1} - \varphi_{i-1}}{|\varphi_{i+1} - \varphi_{i-1}|} \,.$$

The saddle point c is an unstable stationary state under

$$\frac{dX_t}{dt} = -\nabla V(X_t).$$

The saddle point c is an unstable stationary state under

$$\frac{dX_t}{dt} = -\nabla V(X_t).$$

2 The unique unstable direction is $\tau = \frac{\dot{\varphi}(s^*)}{|\dot{\varphi}(s^*)|}$.

The saddle point c is an unstable stationary state under

$$\frac{dX_t}{dt} = -\nabla V(X_t).$$

2 The unique unstable direction is $\tau = \frac{\dot{\varphi}(s^*)}{|\dot{\varphi}(s^*)|}$. Climbing image method:

$$\dot{\phi}_t = -\nabla V(\phi_t) + 2 \langle \nabla V(\phi_t), \tau_0 \rangle \tau_0, \quad t \ge 0.$$

The saddle point c is an unstable stationary state under

$$\frac{dX_t}{dt} = -\nabla V(X_t).$$

2 The unique unstable direction is $\tau = \frac{\dot{\varphi}(s^*)}{|\dot{\varphi}(s^*)|}$. Climbing image method:

$$\dot{\phi}_t = -\nabla V(\phi_t) + 2 \langle \nabla V(\phi_t), \tau_0
angle au_0, \quad t \ge 0.$$

Observations:

c is stationary under (2).

The saddle point c is an unstable stationary state under

$$\frac{dX_t}{dt} = -\nabla V(X_t).$$

2 The unique unstable direction is $\tau = \frac{\dot{\varphi}(s^*)}{|\dot{\varphi}(s^*)|}$. Climbing image method:

$$\dot{\phi}_t = -
abla V(\phi_t) + 2\langle
abla V(\phi_t), au_0
angle au \ge 0$$
.

Observations:

- c is stationary under (2).
- 2 Jacobian of the vector field of (2) at *c* is $-(I 2\tau_0\tau_0^{\top})H$.

• The saddle point *c* is an unstable stationary state under

$$\frac{dX_t}{dt} = -\nabla V(X_t).$$

2 The unique unstable direction is $\tau = \frac{\dot{\varphi}(s^*)}{|\dot{\varphi}(s^*)|}$. Climbing image method:

$$\dot{\phi}_t = -
abla oldsymbol{V}(\phi_t) + 2 \langle
abla oldsymbol{V}(\phi_t), au_0
angle au_0 \,, \quad t \geq 0 \,.$$

Observations:

- c is stationary under (2).
- 2 Jacobian of the vector field of (2) at *c* is $-(I 2\tau_0\tau_0^\top)H$.
- When τ₀ is close to τ, all eigenvalues of the Jacobian have negative real parts.

• The saddle point *c* is an unstable stationary state under

$$\frac{dX_t}{dt} = -\nabla V(X_t).$$

2 The unique unstable direction is $\tau = \frac{\dot{\varphi}(s^*)}{|\dot{\varphi}(s^*)|}$. Climbing image method:

$$\dot{\phi}_t = -
abla oldsymbol{V}(\phi_t) + 2 \langle
abla oldsymbol{V}(\phi_t), au_0
angle au_0 \,, \quad t \geq 0 \,.$$

Observations:

- c is stationary under (2).
- 2 Jacobian of the vector field of (2) at *c* is $-(I 2\tau_0\tau_0^\top)H$.
- When τ₀ is close to τ, all eigenvalues of the Jacobian have negative real parts.

Hence, *c* is a stable stationary point under (2).

Gentlest Ascent Dynamics (GAD)

Gentlest Ascent Dynamics (GAD)

$$\begin{cases} \dot{\phi}_t = -\nabla V(\phi_t) + 2 \frac{\langle \nabla V(\phi_t), \tau_t \rangle}{\langle \tau_t, \tau_t \rangle} \tau_t, \\ \dot{\tau}_t = -\nabla^2 V(\phi_t) \tau_t + \frac{\langle \tau_t, \nabla^2 V(\phi_t) \tau_t \rangle}{\langle \tau_t, \tau_t \rangle} \tau_t. \end{cases}$$

Gentlest Ascent Dynamics (GAD)

$$\begin{cases} \dot{\phi}_t = -\nabla V(\phi_t) + 2 \frac{\langle \nabla V(\phi_t), \tau_t \rangle}{\langle \tau_t, \tau_t \rangle} \tau_t, \\ \dot{\tau}_t = -\nabla^2 V(\phi_t) \tau_t + \frac{\langle \tau_t, \nabla^2 V(\phi_t) \tau_t \rangle}{\langle \tau_t, \tau_t \rangle} \tau_t. \end{cases}$$

- Both the saddle point and the unstable direction are updated.
- It requires computing Hessian of V.