July 02, 2025




Reminder

@ Exercises: solve 8 — 10 questions. Submission deadline: 23.07.2025

@ Course project: Select one topic to conduct numerical experiment, and
write a short report. Submission deadline: 27.07.2025

@ give a 10-15 min presentation. Date: 11.07.2025 or 18.07.2025.
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Machine learning

@ Supervised learning

Dataset contains features and labels: D = {(Xn, yn)}N_,.

@ Classification (pattern recognition)
@ Regression

@ Unsupervised learning
Data: D = {x,}I\_,.
@ clustering: k-means

e discovering latent structure: PCA
@ generative modeling
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Part 1: Transition paths
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Brownian dynamics
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Brownian dynamics

@ Brownian dynamics in R?
dX; = —VV(X;) dt + vV2edB;, t>0,

where € > 0 is a constant.
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Brownian dynamics

@ Brownian dynamics in R?
dX; = —VV(X;) dt + vV2edB;, t>0,
where € > 0 is a constant.
@ Invariant probability density is

m(x) = e 0,

where Z = [.,e~<Y®dx is a normalizing constant.
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Brownian dynamics

@ Brownian dynamics in R?
dX; = —VV(X;) dt + vV2edB;, t>0,
where € > 0 is a constant.
@ Invariant probability density is
m(x) = e 0,
where Z = [.,e~<Y®dx is a normalizing constant.

© Assume that V has multiple local minima.

5/32



Low temperature regime: ¢ < 1

@ Brownian dynamics :

dX; = —VV(X;) dt + V2¢dB; .
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Low temperature regime: ¢ < 1

@ Brownian dynamics :
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Low temperature regime: ¢ < 1

@ Brownian dynamics :

dX; = —VV(X;) dt + V2¢dB; .

@ Small perturbation of noise.

© Related terminology:

@ low-temperature regime
@ zero-temperature limit
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Basin of attraction

Let a € R be a local minimum point of V.
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Basin of attraction

Let a € R be a local minimum point of V.

Definition
Define the set

Q(a) = {x e RY| Jim X(tx) = a},
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Basin of attraction

Let a € R be a local minimum point of V.

Definition
Define the set

_ di | ) —
Qa) = {x eRY| t—ll-TooX(t, x) = a},
where X(t; x) : [0, +oc) x RY — R? is the flow map of the ODE

dx(t; x)
ot

=-VV(X(t;x)), X(O0;x)=x.
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Gradient system

When € = 0, the system satisfies the ODE

ax,
= = Vv

8/32



Gradient system

When € = 0, the system satisfies the ODE

ax,
= = Vv

@ V(X;) decays in time.
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Gradient system

When € = 0, the system satisfies the ODE
aX;

L= _VV(X).

at

@ V(X;) decays in time.
Q limi, . X; = a, once Xy € Q(a).
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Transition events and metastability

When e > 0, dX; = —VV(X;) dt + v/2¢dB,.
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Transition events and metastability

When ¢ > 0, dX; = —VV(X;) dt + v/2¢dB;.

@ Invariant probability density: m(x) = Le~ V().
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Transition events and metastability

When ¢ > 0, dX; = —VV(X;) dt + v/2¢dB;.
@ Invariant probability density: m(x) = Le~ V().

@ When V has multiple local minima, each local minimum points will be
visited infinitely many times.
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Transition events and metastability

When ¢ > 0, dX; = —VV(X;) dt + v/2¢dB;.

@ Invariant probability density: m(x) = Le~ V().

@ When V has multiple local minima, each local minimum points will be
visited infinitely many times.

@ For most of the time, the system is attracted to vicinity of local minimum
points, but transitions happen occasionally.
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Transition events and metastability

@ Two local minimum points a, b € RY.
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Transition events and metastability

@ Two local minimum points a, b € RY.

@ separatrix: 9Q(a) N oQ(b) # 0.
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@ Two local minimum points a, b € RY.
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@ Transitions from Q(a) to Q(b) are rare events, when ¢ < 1.
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Transition events and metastability

@ Two local minimum points a, b € RY.
@ separatrix: 9Q(a) N oQ(b) # 0.
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© Numerical simulation of transitions becomes computationally challenging.
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Transition events and metastability

@ Two local minimum points a, b € RY.

@ separatrix: 9Q(a) N oQ(b) # 0.

@ Transitions from Q(a) to Q(b) are rare events, when ¢ < 1.

© Numerical simulation of transitions becomes computationally challenging.

@ Goal: characterize transition events
e.g. identify the most probable transition pathways.
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Example

Muller-Brown potential

-1.5 -1.0 -05 00 05 10
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Part 2: Minimal energy path (MEP)
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Wentzell-Freidlin theory and Large deviation theory

@ Brownian dynamics: dX; = —VV(X;) dt + v2¢dB;.
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Wentzell-Freidlin theory and Large deviation theory

@ Brownian dynamics: dX; = —VV(X;) dt + v2¢dB;.
@ As ¢ — 0, the probability of a path is determined by action functional.
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Wentzell-Freidlin theory and Large deviation theory

@ Brownian dynamics: dX; = —VV(X;) dt + v2¢dB;.
@ As ¢ — 0, the probability of a path is determined by action functional.
@ Given T > 0, the space of transition paths:

Pr= {%0 ’ ¢ € C([0, T],R?), (0) = a, (T) = b}'
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Wentzell-Freidlin theory and Large deviation theory

@ Brownian dynamics: dX; = —VV(X;) dt + v2¢dB;.
@ As ¢ — 0, the probability of a path is determined by action functional.
@ Given T > 0, the space of transition paths:

Pr= {%0 ’ ¢ € C([0, T],R?), (0) = a, (T) = b}'

Then, for B C Pr,

lim eInP(B)

e—0
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Wentzell-Freidlin theory and Large deviation theory

@ Brownian dynamics: dX; = —VV(X;) dt + v2¢dB;.
@ As ¢ — 0, the probability of a path is determined by action functional.
@ Given T > 0, the space of transition paths:

Pr= {%0 ’ ¢ € C([0, T],R?), (0) = a, (T) = b}'

Then, for B C Pr,

lim elnP(B) = — min IT(p)
e—0 peB
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Wentzell-Freidlin theory and Large deviation theory

@ Brownian dynamics: dX; = —VV(X;) dt + v2¢dB;.
@ As ¢ — 0, the probability of a path is determined by action functional.
@ Given T > 0, the space of transition paths:

Pr={¢ |0 e C10, TLE?), ¢(0) = & o(T) = b}.

Then, for B C Pr,

. . 1
lim cnP(B) = —min Ir(¢) <= P(B)~exp ( ~ - min /T(<p)) .
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Wentzell-Freidlin theory and Large deviation theory

@ Brownian dynamics: dX; = —VV(X;) dt + v2¢dB;.
@ As ¢ — 0, the probability of a path is determined by action functional.
@ Given T > 0, the space of transition paths:

Pr={¢ |0 e C10, TLE?), ¢(0) = & o(T) = b}.

Then, for B C Py,

lim elnP(B) = —min It(p) <= P(B) =~ exp ( 1 min IT(<p)> .
e—0 peB € peB

© Action functional:

2
’ ot

i
() =5 [ [0+ 9Vien)
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Wentzell-Freidlin theory and Large deviation theory

Similarly, on [T, T2], where —co < Ty < T2 < 400, the action functional is

1 [P
I, 1) = 4/
3

20+ V()| o,

among all paths which satisfy

o(T1) = a and p(T2) = b.
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Lower bound of action
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Lower bound of action

Path ¢: o(T:) = a, ¢(Ts) = b, and (T..) € 89(a) N Ib), T. € [Ty, Ta.

Ir, 71 (%)
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Lower bound of action
Path ¢: o(T) = a, ¢(To) = b, and o(T.) € 9Q(a) N dQ(b), T. € [T+, To).

hr, 1(9) 4/ B+ VV(p t))‘ dt+4/ ‘cpt)—kVV(ga(t)‘ ot
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Lower bound of action

Path ¢: o(Tq) = a, p(T2) = b, and ¢(T.) € 9Q(a) N IQ(b), T. € [Ty, T2].
Iy m21() 4/ 1)+ VV(p t))‘ dt+4/ ‘cpt)—kVV(ga(t)‘ at
:}T wmfvvwmﬂw+zzwwm+vvwmﬂw

.
+A B(1)- T V(()) o
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Lower bound of action
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Lower bound of action

Path ¢: o(Tq) = a, p(T2) = b, and ¢(T.) € 9Q(a) N IQ(b), T. € [Ty, T2].
Iy m21() 4/ 1)+ VV(p t))‘ dt+4/ ‘cpt)—kVV(ga(t)‘ at
Yy [ \sb(r)fvvuo(m\ o+ ) / e + v vie| o

.
+ / B(1)- T V(()) o

> [ e e
Ty
—V(o(T%)) = V(g(Th))
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Lower bound of action

Path ¢: o(T1) = a, o(T2) = b, and ¢(T.) € 9Q(a) N dQ(b), T. € [T, Tal.

hr, 1(9) 4/ B+ VV(p t))‘ dt+4/ ‘apt)—kVV(ga(t)‘ ot

-/ wmfvvwmﬂw+zzwwm+vvwmﬂw

.
+A H(1) - VV(p(D)) ot

2L1ﬂWVWﬂmw

=V(e(T7)) = V(e(Th))
>V(c)— V(a)=: AV,
where ¢ = arg min, caq(anaa) V(X)-
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Lower bound of action

Path ¢: o(T1) = a, o(T2) = b, and ¢(T.) € 9Q(a) N dQ(b), T. € [T, Tal.

I 7 (%) 4/ 0+ V(s nﬂw+4/ [6(6) + VV(p(t))| et

-/ wmfvvwmﬂw+zzwwm+vvwmﬂw

.
+A H(1) - VV(p(D)) ot

2L1ﬂWVWﬂmw

=V(e(T7)) = V(e(Th))
>V(c)— V(a)=: AV,
where ¢ = arg min, caq(anaa) V(X)-

Therefore, the lower bound of action is A V.
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Action minimization: minimal energy path (MEP)
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Action minimization: minimal energy path (MEP)

@ On the other hand, there exists a path ¢, which satisfies

o(Th)=a, ¢(T*)=c, ¢(T2)=0b,

(o JVVe®),  Ti<t<T,
(0= —VV(e(t), T*<t<T,.

As Ty — —o0, To — +0o0, the lower bound of the action will be achieved
by this path.

@ Characterization of MEP:

o) | VV(e(t), or (VV)"(e(1)) =0.



Action minimization: minimal energy path (MEP)

@ On the other hand, there exists a path ¢, which satisfies

o(Th)=a, ¢(T*)=c, ¢(T2)=0b,

= d VV(e(),  Th<t<Tr,
(0= —VV(e(t), T*<t<T,.
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Action minimization: minimal energy path (MEP)

@ On the other hand, there exists a path ¢, which satisfies

o(Th)=a, ¢(T*)=c, ¢(T2)=0b,

2(f) — VV(e(1)), Tih<t< T,
(0= —VV(e(t), T*<t<T,.

As Ty — —o0, To — +0o0, the lower bound of the action will be achieved
by this path.
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Action minimization: minimal energy path (MEP)

@ On the other hand, there exists a path ¢, which satisfies

o(Th)=a, ¢(T*)=c, ¢(T2)=0b,

(o JVVe®),  Ti<t<T,
(0= —VV(e(t), T*<t<T,.

As Ty — —o0, To — +0o0, the lower bound of the action will be achieved
by this path.

@ Characterization of MEP:

o) | VV(e(t), or (VV)"(e(1)) =0.

16 /32



Probability of transitions
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Probability of transitions

@ Let B be a set of transition paths containing the MEP.
@ Energy barrier: AV := V(c) — V(a).
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Probability of transitions

@ Let B be a set of transition paths containing the MEP.
@ Energy barrier: AV := V(c) — V(a).

o
P(B) =~ exp ( 1 min IT(‘P)) = &xp ( B Aiv)

€ peB €
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Probability of transitions

@ Let B be a set of transition paths containing the MEP.
@ Energy barrier: AV := V(c) — V(a).

Q

ﬂ)

€

P(B) ~exp (- T min Ir(¢)) = e (-

€ peB

—> MEP is the most probable transition path when ¢ — 0.
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Example

Muller-Brown potential

2.0

1.5

1.0

0.5

0.0

-0.5

-1.5 -1.0 -05 00 05 10

18/32



Part 3: String method
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String method

String method is a numerical method for computing the MEP.
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String method

String method is a numerical method for computing the MEP.
Input:

@ Two local minimum points a and b.
@ Initial path ¢(s), where s € [0, 1], such that ¢(0) = aand p(1) = b.
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String method

String method is a numerical method for computing the MEP.

Input:
@ Two local minimum points a and b.
@ Initial path ¢(s), where s € [0, 1], such that ¢(0) = aand p(1) = b.

Method: evolves each state ¢(s) according to

dX:

L= —TV(X(1),
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String method

String method is a numerical method for computing the MEP.

Input:
@ Two local minimum points a and b.

@ |Initial path ¢(s), where s € [0, 1], such that ¢(0) = aand p(1) = b

Method: evolves each state ¢(s) according to

dX:

at

while keeping |¢(s)| to be uniform, i.e, |4(s)| = C, where C > 0.

— —VV(X(1)),
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String method

The dynamics of the path under string method can be nontrivial.

21/32



String method
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Assume the path converges to a limiting path ¢. This implies:
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String method

The dynamics of the path under string method can be nontrivial.

Assume the path converges to a limiting path ¢. This implies:
@ s invariant under % = —VV(X;), though each ¢(s) may move along .

Q@ VV(p(s)) is parallel to the tangent direction (s).

21/32



String method

The dynamics of the path under string method can be nontrivial.

Assume the path converges to a limiting path ¢. This implies:
@ s invariant under % = —VV(X;), though each ¢(s) may move along .

Q@ VV(p(s)) is parallel to the tangent direction (s).
@ Therefore, ¢ is a MEP.
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Algorithm

Let of = a, ¢k, ..., oK = b € RY denote the discrete states at kth iteration.
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Algorithm
Let of = a, ¢k, ..., oK = b € RY denote the discrete states at kth iteration.
@ Update:

907 = *TVV(SDf()JFSDf(a i:Oa1>23"' 7N7
where 7 is the step-size.
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Algorithm
Let of = a, ¢k, ..., oK = b € RY denote the discrete states at kth iteration.

@ Update:
907 :*TVV(CPHJFSDf(a i:Oa1>23"' 7N7

where 7 is the step-size.
© Reparametrization. Obtain new state <pf-‘+1 by linear interpolation:

Ly — L Li—L:
k+1 j+1 I % ! !l *
wi =T 2/ i P+
I Lj+1 - Lj Lj+1 - Lj ’
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Algorithm
Let of = a, ¢k, ..., oK = b € RY denote the discrete states at kth iteration.

@ Update:
907 :*TVV(CPHJFSDf(a i:Oa1>23"' 7N7

where 7 is the step-size.
© Reparametrization. Obtain new state <pf-‘+1 by linear interpolation:

L, — L; L — L*
k+1 f+1 1 % g - *
Y =T Pt = Pj
I Lj+1 - Lj Lj+1 - Lj ’
where Lj < L < Lj,, Ly = Lo =0, and
i—1 . .
Z% |90j+1 — ¥ \ j
L;‘—Fi, L’:N’ i=1,---,N

T ON—1
> 1@f — 7l
j=0
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Example

Muller-Brown potential

Muller-Brown potential

Muller-Brown potential

-1.5 -1.0 -0.5 0.0

-15 -1.0 -0.5 0.0 0.5 1.0

-15 -1.0 -05 0.0

Figure: Left: init path. Middle: path after 30 iterations. Right: path after 30 iterations
without reparametrization.
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Part 4: Computing saddle point
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Saddle point

On the one hand, recall the lower bound of action:
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Saddle point

On the one hand, recall the lower bound of action:

ﬁﬂ EK¢ 4~/

4/ e oﬂm+4/ () + V(0 ot

1+ V V(g m‘m+4/ pn+vwﬂm‘t

+A H(1) - VV(p(t)) ot

(T7) = V(e(T1))

’;
2ﬂ1mWVWﬂmw
e

V(c) - V(a) = AV,
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Saddle point

On the one hand, recall the lower bound of action:

/[T1 721(90 4 /

4/ e oﬂm+4/ () + V(0 ot

1+ V V(g m‘m+4/ pn+vwﬂm‘t

+A H(1) - VV(p(t)) ot

’;
2ﬂ1m0VWﬂmw
V(e(T*)) = V(p(Th))
V(e

) - V(a) = AV,
where
c= argmin V(x).
xe€0Q(a)NoN(b)
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Saddle point

On the other hand, recall the characterization of MEP:
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Saddle point

On the other hand, recall the characterization of MEP:

p(l)=a, ¢(T")=c, ¢(T2)=0>b,

o JVV(e(t), Ti<t<Tr,
o) = {—VV(Lp(t)), T <t<T,.

@ cis the state on the MEP with highest potential.
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Saddle point

On the other hand, recall the characterization of MEP:

p(l)=a, ¢(T")=c, ¢(T2)=0>b,

o JVV(e(t), Ti<t<Tr,
o) = {—VV(Lp(t)), T <t<T,.

@ cis the state on the MEP with highest potential.

@ It tells whether the transition occurs or not.
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Example

Muller-Brown potential

2.0

1.5

1.0

0.5

0.0

-0.5

-1.5 -1.0 -05 00 05 10
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Saddle point

Therefore, c is an index-1 critical point of potential V.
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Saddle point

Therefore, c is an index-1 critical point of potential V.

Q@ VV(c)=0.
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Saddle point

Therefore, c is an index-1 critical point of potential V.

@ VV(c)=0.
@ HessV(c) has d — 1 positive eigenvalues and one negative eigenvalue.
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Unstable direction at saddle point

@ MEP:
¢(8) | VV(e(s))
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Unstable direction at saddle point

@ MEP:
P(s) [ VV(e(s)) = ¢(s) = -C(s)VV(g(s)),

where C(s) < 0 for s € (0,s*) and C(s) > 0 for s € (s*,1).
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Unstable direction at saddle point

@ MEP:
P(s) [ VV(e(s)) = ¢(s) = -C(s)VV(g(s)),

where C(s) < 0 for s € (0,s*) and C(s) > 0 for s € (s*,1).
@ Expanding VV at ¢ = ¢(s*) and using VV(c) =0,
) S) — p(s* N
= 3(9) = ~C()nsHA L AS) L o(jp(s)  p(s)P),
where As = s — s* and H = HessV(c).
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Unstable direction at saddle point

@ MEP:
P(s) [ VV(e(s)) = ¢(s) = -C(s)VV(g(s)),

where C(s) < 0 for s € (0,s*) and C(s) > 0 for s € (s*,1).
@ Expanding VV at ¢ = ¢(s*) and using VV(c) =0,
) S) — p(s* N
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where As = s — s* and H = HessV(c).

@ Lets > s*and s — s*, we get

H(s*) = pi(s*). n<0.
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Unstable direction at saddle point

@ MEP:
P(s) [ VV(e(s)) = ¢(s) = -C(s)VV(g(s)),

where C(s) < 0 for s € (0,s*) and C(s) > 0 for s € (s*,1).
@ Expanding VV at ¢ = ¢(s*) and using VV(c) =0,
) S) — p(s* N
= 3(9) = ~C()nsHA L AS) L o(jp(s)  p(s)P),
where As = s — s* and H = HessV(c).

@ Lets > s*and s — s*, we get
Hp(s™) = pp(s™), n<0.

; ; i _ p(s")
Unit unstable direction: 7 = EGIE
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Saddle point approximation

@ In string method, MEP is represented by finite discrete states o, . .., ©n.
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@ In string method, MEP is represented by finite discrete states o, . .., ©n.

@ The state ¢; with the highest potential gives an approximation of the
saddle point.
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Saddle point approximation

@ In string method, MEP is represented by finite discrete states o, . .., ©n.

@ The state ¢; with the highest potential gives an approximation of the
saddle point.

@ The unstable direction can be approximated by

Pit1 — Pi-1
T0 —

eist —pic]
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Climbing image method

@ The saddle point ¢ is an unstable stationary state under

ax
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Climbing image method

@ The saddle point ¢ is an unstable stationary state under

ax

@ The unique unstable direction is = = £(J..

Climbing image method:

ot = -V V(¢[) + 2<V V(d)t), T0>7'0 , t>0. (2)
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Climbing image method

@ The saddle point ¢ is an unstable stationary state under

ax

@ The unique unstable direction is = = £(J..

Climbing image method:

ot = -V V(¢[) + 2<V V((Z)t), T0>7'0 , t>0. (2)

Observations:
@ cis stationary under (2).
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Climbing image method

@ The saddle point ¢ is an unstable stationary state under

ax

@ The unique unstable direction is = = £(J..

Climbing image method:

ot = —VV(¢[)+2<VV(¢)1),T0>T0, t>0. (2)
Observations:

@ cis stationary under (2).
@ Jacobian of the vector field of (2) at cis —(/ — 27o7y )H.
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Climbing image method
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@ The unique unstable direction is = = £(J..
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Observations:
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@ Jacobian of the vector field of (2) at cis —(/ — 27o7y )H.

@ When 7y is close to 7, all eigenvalues of the Jacobian have negative real
parts.
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Climbing image method

@ The saddle point ¢ is an unstable stationary state under

ax

@ The unique unstable direction is = = £(J..

Climbing image method:

ot = -V V(¢[) + 2<V V(gbt), T0>7'0 , t>0. (2)

Observations:
@ cis stationary under (2).
@ Jacobian of the vector field of (2) at cis —(/ — 27o7y )H.

@ When 7y is close to 7, all eigenvalues of the Jacobian have negative real
parts.

Hence, c is a stable stationary point under (2).
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Gentlest Ascent Dynamics (GAD)

b= —VV(o) + 257,
ft= —V2V(p)mt + (Vi) 7,

(7t,7)
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Gentlest Ascent Dynamics (GAD)

= —V2V(¢))7t Mﬂ

(7t,71)

{a'st = ~VV(oy) +257 0,

@ Both the saddle point and the unstable direction are updated.
@ It requires computing Hessian of V.
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