Exercises for the course "Mathematical strategies for complex stochastic dynamics", Summer 2025, FUB

1. Consider the ODE in \mathbb{R}^d

$$\frac{dx(t)}{dt} = f(x(t)), \quad t \in [0,T],
x(0) = x, \quad x \in \mathbb{R}^d.$$
(1)

Assume that x(0) is a random variable whose probability density is $p_0(x)$. Let p(x,t) be the probability density of x(t) at time $t \in [0,T]$.

(a) Show that

$$\frac{d}{dt}p(x(t),t) = -\operatorname{div} f(x(t)) p(x(t),t), \quad t \in [0,T]$$

(b) Show that

$$p(x(t), t) = p_0(x) e^{-\int_0^t (\operatorname{div} f)(x(s)) ds}$$

Hint: Recall that p(x, t) solves the continuity equation

$$\frac{\partial p}{\partial t} + \operatorname{div}(fp) = 0, \quad \forall \ t \in (0,T]$$
$$p(x,0) = p_0.$$

2. Prove the identity

$$\int_{0}^{t} B_{s}^{2} dB_{s} = \frac{1}{3} B_{t}^{3} - \int_{0}^{t} B_{s} ds$$
⁽²⁾

Hint: Apply Ito's formula to B_t^3 and then use it to show that both sides satisfy the same SDE (and have the same value zero at t = 0).

3. Let B_t be a one-dimensional Brownian motion. Consider the SDE for $X_t = (X_t^1, X_t^2) \in \mathbb{R}^2$:

$$\begin{cases} dX_t^1 = -\frac{1}{2}X_t^1 dt - X_t^2 dB_t \\ dX_t^2 = -\frac{1}{2}X_t^2 dt + X_t^1 dB_t \end{cases}$$
(3)

- (a) Show that $|X_t|^2$ is constant, i.e. $|X_t| = |X_0|$ for all $t \ge 0$.
- (b) Show that $X_t = (\cos(B_t), \sin(B_t))$ solves (3).

Hint: Apply Ito's formula.

4. Consider the Brownian dynamics

$$dX_t = -\nabla V(X_t) dt + \sqrt{2\beta^{-1}} dB_t , \quad t > 0$$
(4)

where $\beta > 0$ is a constant.

- (a) Write down the expression of the infinitesimal generator \mathcal{L} of (4).
- (b) Let $\pi(x) = \frac{1}{Z} e^{-\beta V(x)}$ be the density of Boltzmann distribution, where Z is a normalizing constant. Show that π is invariant under the dynamics (4).
- (c) Show that \mathcal{L} is a self-adjoint operator with respect to the weighted inner product $\langle g_1, g_2 \rangle_{\pi} = \int_{\mathbb{R}^d} g_1 g_2 \pi dx$.

Hint: See the lecture note.

5. Consider the Ornstein-Unlenbeck (OU) process

$$dX_t = -\kappa X_t \, dt + \sqrt{2\beta^{-1}} dB_t \,, \quad t > 0 \,, \tag{5}$$

where $\kappa, \beta > 0$, and X_0 is fixed.

(a) Show that

$$X_t = e^{-\kappa t} X_0 + \sqrt{2\beta^{-1}} \int_0^t e^{-\kappa(t-s)} dB_s, \quad t > 0.$$
 (6)

(b) Compute the mean and variance of X_t .

Hint: Apply Ito's formula to $e^{-\kappa t}X_t$ and then integrate to get (6). Use (6) and properties of Ito's integral (Ito isometry) to compute the mean and variance.