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1.3 Introduction to SDEs

1.3.1 Brownian motions

Definition 1. A Brownian motion in Rd is a continuous-in-time stationary
Markov process (B(s))s≥0 with the following properties: for all t > s ≥ 0,

1. B(0) = 0.

2. B(t) is almost surely continuous.

3. B(t) has independent increments, i.e. B(t)−B(s) is independent of
B(s).

4. B(t)−B(s) ∼ N (0, (t− s)Id).

The transition density is

p(x, t|y, s) = (2π(t− s))−
d
2 e−

|x−y|2
2(t−s) . (1.1)

In particular, the probability density of B(t) at time t is

p(x, t) = (2πt)−
d
2 e−

|x|2
2t . (1.2)

The following result shows that p in (1.2) solves the heat equation.

Proposition 1. The probability density p satisfies

∂p

∂t
=

1

2
∆p . (1.3)

Proof. Taking derivatives in (1.2), we can compute

∂p

∂t
=− d

2
(2π)(2πt)−

d
2−1e−

|x|2
2t +

|x|2

2t2
(2πt)−

d
2 e−

|x|2
2t

=
(
− d

2t
+

|x|2

2t2

)
(2πt)−

d
2 e−

|x|2
2t

=
(
− d

2t
+

|x|2

2t2

)
p ,

(1.4)

and
∂p

∂xi
= −xi

t
(2πt)−

d
2 e−

|x|2
2t = −xi

t
p . (1.5)
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Taking derivative with respect to x in (1.5), we obtain

∆p =

d∑
i=1

∂2p

∂x2
i

=

d∑
i=1

∂

∂xi

(
− xi

t
p
)

=

d∑
i=1

(
− p

t
− xi

t

∂p

∂xi

)
=

d∑
i=1

(
− p

t
+

x2
i

t2
p
)
=

(
− d

t
+

|x|2

t2

)
p .

(1.6)

The proof is concluded after combining (1.4) and (1.6).

1.3.2 General SDEs
We start with Ito integration in R.

Let T > 0, Bs be a Brownian motion in R, and f : [0, T ] → R be either
deterministic or random (such that f(t) is determined once B(t) is known).

For any integer N , consider a uniform partition of [0, T ]:

0 = t0 < t1 < · · · < tN = T, where tn = nh, h =
T

N
. (1.7)

The Ito integral can be informally defined as:

Definition 2 (Ito integration).∫ T

0

f(t)dBt = lim
N→+∞

N−1∑
n=0

f(tn)∆n, where ∆n = Btn+1
−Btn . (1.8)

Remark. Recall and compare to the definition of the integral∫ T

0

f(t)dt = lim
N→+∞

N−1∑
n=0

f(tn)h . (1.9)

Remark. B(t) is a Brownian motion implies that

∆n = Btn+1
−Btn ∼ N (0, hId). (1.10)

Therefore, E(∆n|Btn) = 0 and E(∆2
n|Btn) = h. Using this fact, we can

compute

E
(N−1∑

n=0

f(tn)∆n

)
=

N−1∑
n=0

E
(
f(tn)∆n

)
=

N−1∑
n=0

E
[
f(tn)E

(
∆n|Btn

)]
= 0 ,

(1.11)
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and similarly,

E
(N−1∑

n=0

f(tn)∆n

)2

= E
[ N−1∑
n,m=0

f(tm)f(tn)∆n∆m

]
= E

[N−1∑
n=0

f2(tn)h
]
.

(1.12)
Taking the limit N → +∞, we obtain the identities

E
(∫ T

0

f(t)dBt

)
= 0,

E
(∫ T

0

f(t)dBt

)2

=

∫ T

0

f2(t)dt .

(1.13)

In particular, an infinitesimal version of the second identity is

(dBt)
2 = dt , or , dBtdBs = δ(t− s)dt . (1.14)

Now, we give the definition of SDEs.
Let f, σ be two continuous function on R. A Markovian process Xt solves

the SDE
dXt = f(Xt) dt+ σ(Xt)dBt , t > 0 (1.15)

if and only if

Xt =

∫ t

0

f(Xs) ds+

∫ t

0

σ(Xs)dBs , ∀ t > 0 (1.16)

Given a function g : R → R, Ito’s lemma allows us to compute dg(Xt).

Lemma 1 (Ito’s lemma). Assume that Xt solves (1.15). Then, we have

dg(Xt) =
[
g′(Xt)f(Xt) +

1

2
g′′(Xt)σ(Xt)

2
]
dt+ σ(Xt)g

′(Xt)dBt . (1.17)

Instead of proving Lemma 1, we provide the following intuition.

Intuition. The identities in (1.14) imply that dBt is of order
√
dt. Therefore,

when computing the expansion of g(Xt+h), we need to consider 2nd derivative
(in order to collect all terms of order t). Concretely, using the SDE (1.15), we
have

dg(Xt) =g′(Xt)dXt +
1

2
g′′(Xt)(dXt)

2

=g′(Xt)f(Xt)dt+ g′(Xt)σ(Xt)dBt +
1

2
g′′(Xt)σ(Xt)

2dB2
t

=
(
g′(Xt)f(Xt) +

1

2
g′′(Xt)σ(Xt)

2
)
dt+ g′(Xt)σ(Xt)dBt .

(1.18)

In view of Lemma 1, we define the operator

Lg = fg′ +
1

2
σ2g′′ . (1.19)

It is called the infinitesimal generator of (1.15). Ito’s lemma can be written as

dg(Xt) = Lg(Xt)dt+ σ(Xt)g
′(Xt)dBt . (1.20)
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The following result is a simple application of Lemma 1.

Proposition 2. For a smooth function g : R → R. We have

E
(
g(Xt)

)
=

∫ t

0

E
(
Lg(Xs)

)
ds , or

d

dt
E
(
g(Xt)

)
= E

(
Lg(Xt)

)
. (1.21)

Proof. Applying Ito’s formula in (1.22), we have

g(Xt) =

∫ t

0

Lg(Xs)ds+

∫ t

0

g′(Xs)σ(Xs)dBs . (1.22)

Taking expectation on both sides above, the Ito’s integration vanishes
thanks to the first identity in (1.13), and we obtain

E
(
g(Xt)

)
=

∫ t

0

E
(
Lg(Xs)

)
ds .

1.3.3 Semigroup and Fokker-Planck equation
Define

(Ttg)(x) = E
[
g(X(t))|X(0) = x

]
, ∀t ≥ 0 ,∀g . (1.23)

Proposition 3. T0 = id and, for t, s ≥ 0, Tt+s = Tt ◦ Ts.

Proof. Using the property of conditional expectation, we derive

(Tt+sg)(x) =E
[
g(X(t+ s))|X(0) = x

]
=E

(
E
[
g(X(t+ s))|X(t)

]∣∣∣X(0) = x
)

=E
(
(Tsg)(X(t))

∣∣∣X(0) = x
)

=(Tt ◦ Tsg)(x) .

(1.24)

Proposition 4.
d

dt
Ttg = LTtg . (1.25)

Proof. Assume X0 = x. Proposition 2 implies that

d

dt
|t=0Ttg(x) = E(Lg(X0)) = (Lg)(x) .

This shows that (1.27) holds at t = 0. For t > 0, applying Proposition 3,
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we get

d

dt
Ttg(x) =

d

ds
|s=0Tt+sg =

d

ds
|s=0Ts

(
Ttg) = L(Ttg) .

Remark. The result above implies that L is the infinitesimal generator of
the semigroup Tt. We often write Tt = etL, for t ≥ 0.

Now, we introduce Fokker-Planck equation. Let us first introduce the adjoint
of L.

Definition 3 (Adjoint operator of L). The adjoint operator of L, denoted
by L⊤, is defined by∫

Rd

[
(L⊤g)(x)

]
g1(x)dx =

∫
Rd

g(x)
[
Lg1(x)

]
dx , (1.26)

for any two smooth functions g and g1.

Lemma 2. L⊤g = −(fg)′ + 1
2 (σ

2g)′′ .

Proof. For the right hand side of (1.28), using (1.21) and integration by
parts, we have∫
R
g(x)

[
Lg1(x)

]
dx =

∫
R
g(x)

(
fg′1+

1

2
σ2g′′1

)
dx =

∫
R

[
−(fg)′+

1

2
(σ2g)′′

]
(x)g1(x)dx .

(1.27)
Combining (1.28), we have∫

R

[
(L⊤g)(x)

]
g1(x)dx =

∫
R

[
− (fg)′ +

1

2
(σ2g)′′

]
(x)g1(x)dx . (1.28)

Since the above identity holds for any g1, we conclude that L⊤g = −(fg)′+
1
2 (σ

2g)′′.

Let p(x, t) denote the probability density of Xt at time t, starting from
Xs = y.

Proposition 5. The density p(x, t) satisfies the Fokker-Planck equation

∂p

∂t
= L⊤p , t > s ,

p(x, s) = δ(x− y),
(1.29)

Proof. Let g : R → R be a test function. We compute d
dtE(g(Xt)). On the
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one hand, since p is the density of Xt at time t, we have

d

dt
E(g(Xt)) =

d

dt

∫
R
g(x)p(x, t)dx =

∫
R
g(x)

∂p

∂t
(x, t)dx . (1.30)

On the other hand, applying Proposition 2, we get

d

dt
E
(
g(Xt)

)
=E

(
Lg(Xt)

)
=

∫
R
Lg(x)p(x, t)dx

=

∫
R
g(x)L⊤p(x, t)dx ,

(1.31)

where the last equality follows from the definition of L⊤ in (1.28). Com-
bining (1.32) and (1.33), we obtain∫

R
g(x)

∂p

∂t
(x, t)dx =

∫
R
g(x)L⊤p(x, t)dx . (1.32)

Since the equality above holds for a general test function g, we conclude
that p solves the equation (1.31).

The results can be extended to SDEs in Rd. The generator is

Lg = f · ∇g +
1

2

d∑
i,j=1

(σσ⊤)ij
∂2g

∂xi∂xj
. (1.33)

Its adjoint is

L⊤g = −div(fg) +
1

2

d∑
i,j=1

∂2
(
(σσ⊤)ijg

)
∂xi∂xj

. (1.34)

We look at a concrete example.

Example (Brownian motion in Rd). For Brownian motion Xt = Bt, the SDE
is

dXt = dBt . (1.35)

In this case, it corresponds to the general form (1.15) with f = 0 and
σ = Id. From (1.21) and Lemma 2, we obtain the generator L and its
adjoints

L = L⊤ =
1

2
∆. (1.36)

Therefore, the Fokker-Planck equation in Proposition 5 reduces to the heat
equation in Proposition 1.
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