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1.3 Introduction to SDEs

1.3.1 Brownian motions

Definition 1. A Brownian motion in R? is a continuous-in-time stationary
Markov process (B(s))s>o with the following properties: for all ¢ > s > 0,

1. B(0) =

Sy

(
2. B(t) is almost surely continuous.
3. B(t) has independent increments, i.e. B(t) —
B(s).
4. B(t) — B(s) ~ N(0, (t — s)Iq).

The transition density is

B(s) is independent of

le—yl|?
p(z,tly, s) = (2n(t — s)) " 2e 30+ . (1.1)
In particular, the probability density of B(¢) at time ¢ is
d _|z=|?
p(z,t) = (2mt) " 2e” 2F . (1.2)
The following result shows that p in (1.2) solves the heat equation.
Proposition 1. The probability density p satisfies
dp 1
— =—-Ap. 1.3
ot — 27" (1.3)
Proof. Taking derivatives in (1.2), we can compute
8]? d —d— _7 |Q’,‘|2 |m|2
L= Zom) (2t L (ont 2
2 o omr) e 1 B ot
d |2 g _lal?
O Ul N S 1.4
( 2t+2t2)< )72e 14
(- 4, @)
T2 )P
and 5 )
p _d _l=| 9%
= 2 (27t) " 2 2% = ——1p. 1.5
o =~ (e de i (15)
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Taking derivative with respect to z in (1.5), we obtain

Zzl 0 2
d d
. p  x; Op . p %2 _ d |~T|2
Y (-i-Tam) =X (-ia)=(-3+ )
The proof is concluded after combining (1.4) and (1.6). O

1.3.2 General SDEs
We start with Ito integration in R.
Let T > 0, By be a Brownian motion in R, and f : [0,7] — R be either
deterministic or random (such that f(¢) is determined once B(t) is known).
For any integer N, consider a uniform partition of [0, T:
T
O=tg <ty <---<ty=1T, where t, =nh, hzﬁ. (1.7)

The Ito integral can be informally defined as:

Definition 2 (Ito integration).

T N—-1
/0 f(B)dB, = lim > f(tn)An, where Ay =By, — B, . (18)
n=0

Remark. Recall and compare to the definition of the integral

T N-1
/O fdt = Tim S f(ta)h. (1.9)
=0

N—+co
n—

Remark. B(t) is a Brownian motion implies that

An = Btn+1 - Btn ~ N(07 h_[d) (110)
Therefore, E(A,|B;,) = 0 and E(A2|B,,) = h. Using this fact, we can
compute
N-1 N-1 N-—1
E( D ft)A) = S E(f(t)A) = 3 E[f(t)E(A0BL,)] =0,
n=0 n=0 n=0

(1.11)
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and similarly,
N-1 9 N-1 N-1
B(Y ft)A) =B 32 fltm) fE)AA] =E[ 3 fA ()] .
n=0 n,m=0 n=0
(1.12)
Taking the limit N — 400, we obtain the identities
T
B( [ rwan)=o,
0 (1.13)
T 9 T
e[ swis) = [ P
0 0
In particular, an infinitesimal version of the second identity is
(dBy)*> =dt, or, dB;dBs = §(t — s)dt. (1.14)

Now, we give the definition of SDEs.
Let f,o be two continuous function on R. A Markovian process X; solves
the SDE

if and only if

X, = /f ds+/ o(X,)dB,, Vt>0 (1.16)

Given a function g : R — R, Ito’s lemma allows us to compute dg(Xy).

Lemma 1 (Ito's lemma). Assume that X, solves (1.15). Then, we have

dg(Xy) = [g'(Xt) F(Xp) + %g”(Xt)a(Xt)Q dt + o(X)g' (X:)dBy . (1.17)

Instead of proving Lemma 1, we provide the following intuition.

Intuition. The identities in (1.14) imply that dB; is of order v/dt. Therefore,
when computing the expansion of g(X; ), we need to consider 2nd derivative
(in order to collect all terms of order t). Concretely, using the SDE (1.15), we
have

dg(X,) =g/ (X)X, + 59" (X0) (dX)?
=g'(Xy) f(Xy)dt + ¢’ (Xy)o (X, )dBy + 19 (X1)o(X;)?dBy (1.18)

:(g'(Xt)f(Xt)—i- 50" (X0)o(X0)? ) dt + g (X,)o (X)dB,

In view of Lemma 1, we define the operator

1
Lg=fg + 5029". (1.19)
It is called the infinitesimal generator of (1.15). Ito’s lemma can be written as
dg(Xy) = Lg(X¢)dt + 0(X:)g' (Xi)dBy . (1.20)
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The following result is a simple application of Lemma 1.

Proposition 2. For a smooth function g : R — R. We have

E(g(Xt)):/O E(Lg(X,))ds, or %E(g(Xt)):]E(Eg(Xt))- (1.21)

Proof. Applying Ito’s formula in (1.22), we have

o) = [ LoXds+ [ o(X)o(x)a,. (1.22)

Taking expectation on both sides above, the Ito’s integration vanishes
thanks to the first identity in (1.13), and we obtain

B(o(X) = [ E(Ca(X))ds.

O
1.3.3 Semigroup and Fokker-Planck equation
Define
(Trg)(x) = E[g(X(1))|X(0) = 2], Vt=>0,Vg. (1.23)
Proposition 3. T = id and, for t,s > 0, Ty4s = T} o Ts.
Proof. Using the property of conditional expectation, we derive
(Ti+s9)(z) =E[g(X (t + 5))|X(0) = =]
—E(E[g(X(t + )X (0] [X(0) = 2)
(1.24)
—E((T,9)(X (£))| X(0) = 2)
:(Tt o sg)(x) .
O
Proposition 4.
d
ﬁTtg:LTtg. (1.25)
Proof. Assume Xy = z. Proposition 2 implies that
d
7 l=0Tig(2) = E(Lg(Xo)) = (Lg)(2).
This shows that (1.27) holds at ¢t = 0. For ¢ > 0, applying Proposition 3,
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we get

d d d
%Ttg(x) = £|520Tt+sg = £|s:0Ts (Trg9) = L(T:g).-

O

Remark. The result above implies that £ is the infinitesimal generator of
the semigroup T;. We often write T, = et~, for t > 0.

Now, we introduce Fokker-Planck equation. Let us first introduce the adjoint

of L.

Definition 3 (Adjoint operator of £). The adjoint operator of £, denoted
by LT, is defined by

/ (£ o) ()] g1 () s = / ) B )] s (1.26)
Rd

Rd

for any two smooth functions g and g;.

Lemma 2. LTg = —(fg)' + 3(c2g)".

Proof. For the right hand side of (1.28), using (1.21) and integration by
parts, we have

[s@a@]iz = [ o@)si+zea)ie = [ [0/ +50%) | @nd.
(1.27)
Combining (1.28), we have

[T o@ln@ds = [ [0+ 5% |@n@d.  125)

Since the above identity holds for any g;, we conclude that £LTg = —(fg)'+
L% 0

Let p(z,t) denote the probability density of X; at time ¢, starting from
Xs=vy.

Proposition 5. The density p(z,t) satisfies the Fokker-Planck equation

Jp T
—=L'p, t>s,
ot . s

p(z,s) = 6(x —y),

(1.29)

Proof. Let g : R — R be a test function. We compute £E(g(X;)). On the
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one hand, since p is the density of X; at time ¢, we have

d Op

TE((x) = o / o(@)p(a, t)de = / o) Ltz (130)

On the other hand, applying Proposition 2, we get

g (g(X,)) =E(Lg(X2)

dt
- / Co(@)p(e, t)dz (1.31)

- / (@) p(z, t)ds,
R

where the last equality follows from the definition of £ in (1.28). Com-
bining (1.32) and (1.33), we obtain

Ip
/Rg(m)a(a:,t)dzz/Rg(x)ETp(a:,t)dz. (1.32)

Since the equality above holds for a general test function g, we conclude
that p solves the equation (1.31). O

The results can be extended to SDEs in R%. The generator is

d

Lg=f-V _|_} ( T)“ﬂ (1.33)
Its adjoint is
d
1 9*((o0")ij9)
Tog=—di - Z A\ JYd)
L' g=—div(fg) + 5 ”E:l 207, (1.34)

We look at a concrete example.

Example (Brownian motion in Rd). For Brownian motion X; = By, the SDE
is

dX; = dBy. (1.35)
In this case, it corresponds to the general form (1.15) with f = 0 and
o = I;. From (1.21) and Lemma 2, we obtain the generator £ and its

adjoints
1
£=£T:§A (1.36)

Therefore, the Fokker-Planck equation in Proposition 5 reduces to the heat
equation in Proposition 1.




