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2.4 Invariant distribution

Assume that the probability density X = x is 7(x), where 7(x) is positive and
fRd m(x)dx = 1. Then the probability density of X; satisfies the Fokker-Planck
equation

5’177 T
p(z,0) = 7(x).

Definition 1. 7 is an invariant density, if p(-,t) = 7 for all ¢ > 0.
From (2.1), we know that 7 is (smooth) invariant density if and only if
LTr=0. (2.2)

In many cases, the process X; approaches equilibrium as ¢t — +oo. This
means that its probability density converges to some limiting probability density

Poos 1.€. tLHJPoop(x’t) :poo(x)'

Definition 2. X; is ergodic with respect to an invariant density m, if p(z,t)
converges to 7 as t — +oo starting from any density p(z,0) at time t = 0.

Theorem 1 (Birkhoff ergodic theorem). Assume X; is ergodic with respect
to the invariant density 7. Let f : R? = R be a measurable function such
that [,4 |f(z)|7(x)dz < oo. Then, with probability one, we have

T—+oco

1T _
lim f/o f(Xy)dt = L flz)m(x)dz . (2.3)

Theorem 1 allows us to estimate the mean value with respect to density =
by computing time average along the trajectory of X;.

2.5 Feynman-Kac formula

Given g, h : R? — R. Let us define

u(z,t) =Ele~ ftTh<Xs>ng(XT)]Xt - x} zeRY, te[0,T].  (24)

Proposition 1. The function u in (2.4) solves the PDE

ou
— = < T
at—FLu h, 0<t<T,

U(ZE7T):g7 t=T
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Proof. Let us first show that

w(z, t) = [ S X sy (X, ¢ ’Xt - x] V<t <T.  (2.6)
In fact, using (2.4), we have

u(z,t) =E 5 h(XS)ng(XT))Xt = x}

:E _ei ftt h dS 7-[1’ h(X )ds T)‘Xt = z:|

—E[g[e= I mXo)ds o= [F h(xs)dsg(XT)‘th} X, = x] (2.7)
—E[e h(Xa)dsqy (X, t')‘Xt = x] .
Applying Ito’s formula, we obtain
do I MX)ds _ _ p(x, o= S HX)ds gy
(2.8)

du(Xy,t') = (%t + £u) (Xp, t")dt' + Vu(Xy,t') T o(Xy)dBy

Therefore,
(e MOy (X, 1))
:d<e_ftt/h(Xﬂ)ds)u(Xt/,t) + (e — L (60 ) du (X, )

—e= [ P(X)ds [( — h(Xy) + % + L'u) (Xp, t)dt + Vu(Xy, t’)TU(Xt/)dBt/] .

(2.9)
Integrating and taking expectation, we get
g 7f5/ h(Xs)ds du N g
E[ o= I hX. (— h(Xu) + 5 + Liu)(XS/,s )ds ‘Xt = x]
t

o 2.10

—F |:e— I} h(Xs)d3u<Xt/,tl>‘Xt — xil _ ’LL(ZL‘7 t) ( )
=0,

where the last equality follows from (2.6).

Since the above equality is true for all ¢/ € [t,T], taking ¢ = t, we
conclude that u solves the PDE (2.5). The terminal condition in (2.5)
follows directly from (2.4). O

Let us now consider a bounded domain D C R%. Define
™D
w(z) = E[Q(XTD) +/ h(Xs)ds‘Xo = x] , zeD. (2.11)
0

where
mp = inf{t > 0, X; € 0D} (2.12)

is the exit time from D.
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Proposition 2. The function w in (2.11) solves the PDE

Lw=—h, inD

2.13
w=g, ondD. ( )

Proof. Assume that w is the solution to (2.13) and Xy = z. Applying Ito’s
formula, we have

T T
w(Xt) —w(x) = / Lw(X)ds —|—/ Vw(X,)To(X,)dB, . (2.14)
0 0
Choosing t = 7p and taking expectation in the identity above, we get

w(z) :E(w(XTD) = /OTD Cw(Xs)ds‘Xo = x) 015)
2.15

:E(g(XTD) + /OTD h(Xs)ds‘Xo = m)

2.6 Brownian dynamics and Langevin equation
Let V : R? = R be a smooth function. We consider the Brownian dynamics
dX; = —VV(Xt) dt + \ Qﬂ_ldBt, t>0 (216)

where § > 0 is a constant.
Its generator is

1
Lg=-VV - -Vg+ BAg. (2.17)
And the adjoint of L is
1
LTg = div(VVyg) + BAg =div(VVg+ 3 'Vg). (2.18)

Definition 3 (Boltzmann distribution). The density of Boltzmann distribu-
tion is 1

m(z) = Ee*f’v@), z € RY, (2.19)
where Z = [, e7#V(®) d is a normalizing constant such that [, 7(2)dz =
1.
Proposition 3. The probability density 7 in (2.19) is invariant under the
Brownian dynamics.

Proof. Using (2.18), it is easy to see that

LTr = Z Niv(VVe V@ 1 g=lye AV (@) = g,
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Therefore, 7 is invariant. O
In fact, under certain conditions on V', the process X; is ergodic with respect

to the Boltzmann distribution.

Example (Ornstein-Unlenbeck process). When V (z) = % The SDE is

dX; = —kX;dt ++/2871dB;, t>0 (2.20)

The invariant density is

1 lml2
m(z) = Ee—iﬁ ol (2.21)

Next, let us consider the Langevin dynamics:
th :Ptdt

2.22
dP, = — VV(Q;) dt — yPydt + /2y~ 1dB; . 22

This corresponds to the SDE in the general form with

_ 2d _ . _ T 2d _ (0 0 2dx2d
= (q,p) €R*,  flq,p) = (p,.—VV(g)—p) €R*, U—(O \/WI)ER -

_(2.23)

The generator is

Lg=p-Veg—VV - -Vpg—7p-Vpg+ %Apm (2.24)

Its adjoint is

LTg=— divy(pg) + divp,(VVg) + vdivy(pg) + %Apg
(2.25)
=—p-Veg+VV-V,g+div, (pg + B‘lvpg) ~

Definition 4 (Hamiltonian). Define the Hamiltonian

H(g.p) = Vig) + 2. (2.20

Proposition 4. The probability density Z; ‘e #¥ is invariant under the

Langevin dynamics (2.22), where Z; = fn@d e P dqdp is the normalizing
constant.

Proof. Using (2.25) and (2.26), we compute
LTe P = —p.V,e P4 VY- Tpe PH tadivy (pe P +5717,6 777 ) = 0.

O



