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2.4 Invariant distribution
Assume that the probability density X0 = x is π(x), where π(x) is positive and∫
Rd π(x)dx = 1. Then the probability density of Xt satisfies the Fokker-Planck

equation
∂p

∂t
= L⊤p , t > 0 ,

p(x, 0) = π(x) .
(2.1)

Definition 1. π is an invariant density, if p(·, t) = π for all t ≥ 0.

From (2.1), we know that π is (smooth) invariant density if and only if

L⊤π = 0 . (2.2)

In many cases, the process Xt approaches equilibrium as t → +∞. This
means that its probability density converges to some limiting probability density
p∞, i.e. lim

t→+∞
p(x, t) = p∞(x).

Definition 2. Xt is ergodic with respect to an invariant density π, if p(x, t)
converges to π as t → +∞ starting from any density p(x, 0) at time t = 0.

Theorem 1 (Birkhoff ergodic theorem). Assume Xt is ergodic with respect
to the invariant density π. Let f : Rd → R be a measurable function such
that

∫
Rd |f(x)|π(x)dx < ∞. Then, with probability one, we have

lim
T→+∞

1

T

∫ T

0

f(Xt)dt =

∫
Rd

f(x)π(x)dx . (2.3)

Theorem 1 allows us to estimate the mean value with respect to density π
by computing time average along the trajectory of Xt.

2.5 Feynman-Kac formula
Given g, h : Rd → R. Let us define

u(x, t) = E
[
e−

∫ T
t

h(Xs)dsg(XT )
∣∣∣Xt = x

]
, x ∈ Rd, t ∈ [0, T ] . (2.4)

Proposition 1. The function u in (2.4) solves the PDE

∂u

∂t
+ Lu = h, 0 ≤ t < T ,

u(x, T ) = g , t = T
(2.5)
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Proof. Let us first show that

u(x, t) = E
[
e−

∫ t′
t

h(Xs)dsu(Xt′ , t
′)
∣∣∣Xt = x

]
, ∀t ≤ t′ ≤ T . (2.6)

In fact, using (2.4), we have

u(x, t) =E
[
e−

∫ T
t

h(Xs)dsg(XT )
∣∣∣Xt = x

]
=E

[
e−

∫ t′
t

h(Xs)dse−
∫ T
t′ h(Xs)dsg(XT )

∣∣∣Xt = x
]

=E
[
E
[
e−

∫ t′
t

h(Xs)dse−
∫ T
t′ h(Xs)dsg(XT )

∣∣∣Xt′

]∣∣∣Xt = x
]

=E
[
e−

∫ t′
t

h(Xs)dsu(Xt′ , t
′)
∣∣∣Xt = x

]
.

(2.7)

Applying Ito’s formula, we obtain

de−
∫ t′
t

h(Xs)ds =− h(Xt′)e
−

∫ t′
t

h(Xs)dsdt′

du(Xt′ , t
′) =

(∂u
∂t

+ Lu
)
(Xt′ , t

′)dt′ +∇u(Xt′ , t
′)⊤σ(Xt′)dBt′

(2.8)

Therefore,

d
(
e−

∫ t′
t

h(Xs)dsu(Xt′ , t
′)
)

=d
(
e−

∫ t′
t

h(Xs)ds
)
u(Xt′ , t

′) +
(
e−

∫ t′
t

h(Xs)ds
)
du(Xt′ , t

′)

=e−
∫ t′
t

h(Xs)ds
[(

− h(Xt′) +
∂u

∂t
+ Lu

)
(Xt′ , t

′)dt′ +∇u(Xt′ , t
′)⊤σ(Xt′)dBt′

]
.

(2.9)
Integrating and taking expectation, we get

E
[ ∫ t′

t

e−
∫ s′
t

h(Xs)ds
(
− h(Xs′) +

∂u

∂t
+ Lu

)
(Xs′ , s

′)ds′
∣∣∣Xt = x

]
=E

[
e−

∫ t′
t

h(Xs)dsu(Xt′ , t
′)
∣∣∣Xt = x

]
− u(x, t)

=0 ,

(2.10)

where the last equality follows from (2.6).
Since the above equality is true for all t′ ∈ [t, T ], taking t′ = t, we

conclude that u solves the PDE (2.5). The terminal condition in (2.5)
follows directly from (2.4).

Let us now consider a bounded domain D ⊆ Rd. Define

ω(x) = E
[
g(XτD ) +

∫ τD

0

h(Xs)ds
∣∣∣X0 = x

]
, x ∈ D . (2.11)

where
τD = inf{t ≥ 0, Xt ∈ ∂D} (2.12)

is the exit time from D.
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Proposition 2. The function ω in (2.11) solves the PDE

Lω = −h , in D

ω = g , on ∂D .
(2.13)

Proof. Assume that ω is the solution to (2.13) and X0 = x. Applying Ito’s
formula, we have

ω(Xt)− ω(x) =

∫ ⊤

0

Lω(Xs)ds+

∫ ⊤

0

∇ω(Xs)
⊤σ(Xs)dBs . (2.14)

Choosing t = τD and taking expectation in the identity above, we get

ω(x) =E
(
ω(XτD )−

∫ τD

0

Lω(Xs)ds
∣∣∣X0 = x

)
=E

(
g(XτD ) +

∫ τD

0

h(Xs)ds
∣∣∣X0 = x

) (2.15)

2.6 Brownian dynamics and Langevin equation
Let V : Rd → R be a smooth function. We consider the Brownian dynamics

dXt = −∇V (Xt) dt+
√

2β−1dBt , t > 0 (2.16)

where β > 0 is a constant.
Its generator is

Lg = −∇V · ∇g +
1

β
∆g . (2.17)

And the adjoint of L is

L⊤g = div(∇V g) +
1

β
∆g = div(∇V g + β−1∇g) . (2.18)

Definition 3 (Boltzmann distribution). The density of Boltzmann distribu-
tion is

π(x) =
1

Z
e−βV (x), x ∈ Rd, (2.19)

where Z =
∫
Rd e

−βV (x) dx is a normalizing constant such that
∫
Rd π(x)dx =

1.

Proposition 3. The probability density π in (2.19) is invariant under the
Brownian dynamics.

Proof. Using (2.18), it is easy to see that

L⊤π = Z−1div(∇V e−βV (x) + β−1∇e−βV (x)) = 0.
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Therefore, π is invariant.
In fact, under certain conditions on V , the process Xt is ergodic with respect

to the Boltzmann distribution.

Example (Ornstein-Unlenbeck process). When V (x) = κ|x|2
2 . The SDE is

dXt = −κXt dt+
√
2β−1dBt , t > 0 (2.20)

The invariant density is

π(x) =
1

Z
e−

βκ|x|2
2 . (2.21)

Next, let us consider the Langevin dynamics:

dQt =Ptdt

dPt =−∇V (Qt) dt− γPtdt+
√
2γβ−1dBt .

(2.22)

This corresponds to the SDE in the general form with

x = (q, p) ∈ R2d, f(q, p) =
(
p,−∇V (q)−γp

)⊤ ∈ R2d, σ =

(
0 0

0
√
2γβ−1Id

)
∈ R2d×2d .

(2.23)
The generator is

Lg = p · ∇qg −∇V · ∇pg − γp · ∇pg +
γ

β
∆pg . (2.24)

Its adjoint is

L⊤g =− divq(pg) + divp(∇V g) + γdivp(pg) +
γ

β
∆pg

=− p · ∇qg +∇V · ∇pg + γdivp

(
pg + β−1∇pg

)
.

(2.25)

Definition 4 (Hamiltonian). Define the Hamiltonian

H(q, p) = V (q) +
|p|2

2
. (2.26)

Proposition 4. The probability density Z−1
1 e−βH is invariant under the

Langevin dynamics (2.22), where Z1 =
∫
R2d e

−βHdqdp is the normalizing
constant.

Proof. Using (2.25) and (2.26), we compute

L⊤e−βH = −p·∇qe
−βH+∇V ·∇pe

−βH+γdivp

(
pe−βH+β−1∇pe

−βH
)
= 0 .
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