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1.1 Timescales and convergence to equilibrium
In this section, we assume that the process Xt in Rd satisfies the Brownian
dynamics

dXt = −∇V (Xt) dt+
√
2β−1dBt , t > 0 (1.1)

whose generator is given by

Lg = −∇V · ∇g +
1

β
∆g . (1.2)

Recall the Boltzmann density

π(x) =
1

Z
e−βV (x), x ∈ Rd, (1.3)

where Z is a normalizing constant.
Let us denote by L2

π(Rd) the Hilbert space induced by the weighted scalar
product

⟨g1, g2⟩π =

∫
Rd

g1g2πdx =
1

Z

∫
Rd

g1g2e
−βV dx , (1.4)

for two test functions g1, g2 : Rd → R.

Lemma 1. We have

⟨Lg1, g2⟩π = ⟨g1,Lg2⟩π = − 1

β

∫
Rd

∇g1 · ∇g2π dx . (1.5)

Therefore, L is a self-adjoint operator in L2
π(Rd).

Proof. Let us compute

⟨Lg1, g2⟩π =
1

Z

∫
Rd

(
−∇V · ∇g1 +

1

β
∆g1

)
g2 e

−βV dx

=
1

Z

∫
Rd

[(
−∇V · ∇g1

)
g2 e

−βV − 1

β
∇g1 · ∇(g2 e

−βV )
]
dx

=− 1

β

1

Z

∫
Rd

∇g1 · ∇g2 e
−βV dx

=− 1

β

∫
Rd

∇g1 · ∇g2π dx .

Switching g1 and g2, we obtain the first equality in (1.5).

In particular, choosing g1 = g2 = g, we have

−⟨Lg, g⟩π =
1

β

∫
Rd

|∇g|2π dx ≥ 0 . (1.6)

We study the spectrum of −L. We assume that the spectrum of −L consists
of discrete eigenvalues. Lemma 1 and (1.6) imply that all eigenvalues of −L
are non-negative real numbers. Denote by 1 the constant function whose value

1



Lecture 4: Markov chains and SDEs

equals to 1. Then, we have −L1 = 0, which implies that λ = 0 is an eigenvalue
and 1 is the associated eigenfunction. Assume that all the eigenvalues are
ordered as (λ = 0 is simple)

0 = λ0 < λ1 ≤ λ2 ≤ . . . , (1.7)

and the corresponding eigenfunctions are φ0 = 1, φ1, φ2, . . . . Without loss of
generosity, we assume that φi are normalized, i.e. |φi|2π =

∫
Rd φ

2
iπdx = 1, for

i = 0, 1, 2, · · · , such that φ0, φ1, φ2, . . . form an orthonormal basis of L2
π(Rd),

that is, ⟨φi, φj⟩π = δij , for i, j = 0, 1, . . . .
Recall that the semigroup

(Ttg)(x) = E[g(Xt)|X0 = x], x ∈ Rd . (1.8)

satisfies
d

dt
Ttg = LTtg , (1.9)

which implies Ttg = etL . Therefore, the eigenvalues of Tt are νi = e−λit, with

1 = ν0 > ν1 ≥ ν2 ≥ . . . . (1.10)

For a function g, with g =
∑+∞

i=0 ⟨g, φi⟩πφi, we have

E[g(Xt)|X0 = x]

=(Ttg)(x)

=(etLg)(x)

=

+∞∑
i=0

⟨g, φi⟩π(etLφi)(x)

=

+∞∑
i=0

⟨g, φi⟩πe−λitφi(x)

=Eπ(g) +

+∞∑
i=1

⟨g, φi⟩πe−λitφi(x)

(1.11)

Hence, the derivation above shows that E[g(Xt)|X0 = x] converges to Eπ(g)
and the speed of convergence is dominated by the eigenvalue λ1. The larger λ1

is, the faster the convergence is.
Let us denote by

H1 :=
{
g ∈ L2

π(Rd)
∣∣∣ ∫

Rd

g πdx = 0,

∫
Rd

|∇g|2πdx < ∞
}
. (1.12)

Proposition 1 (Variational principle).

λ1 = min
g∈H1

1
β

∫
Rd |∇g|2π dx∫
Rd g2π dx

. (1.13)
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Proof. For any g ∈ H1, we have ⟨g,1⟩π =
∫
Rd gπdx = 0. Let us consider

the expansion g =
∑+∞

i=1 wiφi. For the denominator, using the fact that
⟨φi, φj⟩π = δij , we have∫

Rd

g2π dx = ⟨g, g⟩π = ⟨
+∞∑
i=1

wiφi,

+∞∑
i=1

wiφi⟩π =

+∞∑
i=1

w2
i . (1.14)

For the numerator, we have

1

β

∫
Rd

|∇g|2π dx =⟨−Lg, g⟩π

=
〈
− L

+∞∑
i=1

wiφi,

+∞∑
i=1

wiφi

〉
π

=
〈+∞∑

i=1

wi(−L)φi,

+∞∑
i=1

wiφi

〉
π

=
〈+∞∑

i=1

wiλiφi,

+∞∑
i=1

wiφi

〉
π

=

+∞∑
i=1

w2
i λi

≥λ1

+∞∑
i=1

w2
i

=λ1

∫
Rd

g2π dx

(1.15)

Therefore, we have

1

β

∫
Rd

|∇g|2π dx ≥ λ1

+∞∑
i=1

w2
i = λ1

∫
Rd

g2π dx ,

or

λ1 ≤
1
β

∫
Rd |∇g|2π dx∫
Rd g2π dx

.

On the other hand, taking g = φ1 and using (1.6), we have

1

β

∫
Rd

|∇g|2π dx = ⟨−Lg, g⟩π = λ1

∫
Rd

g2π dx ,

which shows that the equality in (1.13) can be attained.

1.2 Markov chains
Consider the set D = {1, 2, · · · ,M}, where M > 1. A Markov chain is a discrete-
in-time Markovian process. Denote by Pn the M ×M probability matrix at nth
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step for n ≥ 0, whose entries are P(xn+1 = j|xn = i), for i, j ∈ D. The fact that
the row sum of Pn equals one can be expressed as

Pn1 = 1 , (1.16)

where 1 ∈ RM denotes the vector with all elements equal to one.
Let π(n) be the distribution of the Markov chain at nth step, that is, π(n)

i =
P(xn = i), for i ∈ D. In particular, π(0) is the initial distribution of the state
x0 at step n = 0.

Proposition 2.
π(n+1) = P⊤

n π(n) . (1.17)

Proof. For i ∈ D, we have

π
(n+1)
i =P(xn+1 = i)

=

M∑
j=1

P(xn+1 = i, xn = j)

=

M∑
j=1

P(xn+1 = i|xn = j)P(xn = j)

=

M∑
j=1

(Pn)jiπ
(n)
j .

The equation (1.17) is called master equation. It also implies that, for any
0 ≤ n1 < n, we have

π(n) = (Pn1
Pn1+1 · · ·Pn−1)

⊤π(n1) . (1.18)

In particular, choosing n1 = 0, we have

π(n) =
( n−1∏

l=0

Pl

)⊤
π(0) . (1.19)

In the following, we assume that the Markov chain is time-homogeneous, i.e.
the probabilities P(xn+1 = j|xn = i) are independent of n, and we denote its
probability matrix by P . In this case, (1.16) implies that λ = 1 is an eigenvalue
of P and 1 is the corresponding (right) eigenvector. (1.19) becomes

π(n) =
(
Pn

)⊤
π(0) , n ≥ 0 . (1.20)

Definition 1. Assume that the Markov chain is time-homogeneous. A dis-
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tribution π is invariant, if

πi =

M∑
j=1

πjPji , or, π = P⊤π . (1.21)

Therefore, π is a invariant distribution, if and only if π is a (non-negative) left
eigenvector of P corresponding to the eigenvalue λ = 1.

Definition 2. The Markov chain is ergodic, if there is a distribution π, such
that

lim
n→+∞

(Pn)⊤π(0) = π , (1.22)

for all initial distribution π(0).

Proposition 3. Let π be the limiting distribution in Definition 2, then π is
the unique invariant distribution of the Markov chain.

Proof. On the one hand, choosing π(0) = π, from (1.22) we have

π = lim
n→+∞

(Pn)⊤π = P⊤ lim
n→+∞

(Pn−1)⊤π = P⊤π .

Hence, π is invariant. On the other hand, let π′ be an invariant distribution,
then we have (Pn)⊤π′ = (Pn−1)⊤π′ = · · · = π′. Therefore,

π = lim
n→+∞

(Pn)⊤π′ = π′ ,

which shows that π is unique.

We say P is a primitive matrix, if there exists n ≥ 1 such that all entries of
Pn are positive. This means that, for any two states i, j ∈ D, the probability of
reaching j in n steps starting from i is positive.

Theorem 1 (Perron-Frobenius Theorem). Assume that P is primitive. Then,

1. λ = 1 is an eigenvalue of P and any other eigenvalues λ is strictly
smaller than 1.

2. λ = 1 is simple, i.e. the eigenspace associated to λ = 1 is one-
dimensional.

3. There exists an eigenvector v ∈ RM with eigenvalue λ = 1 such that
all components of v are positive and P⊤v = v.

4. lim
n→∞

Pn = 1v⊤.

The eigenvector v is called Perron eigenvector or principal eigenvector. No-
tice that 1⊤π(0) = 1 for any probability distribution π(0). From the last claim
in Theorem 1, we can derive

lim
n→+∞

(Pn)⊤π(0) = v1⊤π(0) = v . (1.23)
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Therefore, Theorem 1 implies that, when P is primitive, the Markov chain is
ergodic and v is the unique invariant distribution.

Let h, g : D → R and D′ ⊂ D be a subset of D. Consider the problem

[(P − I)w]i =− hi, i ∈ D′ ,

wi =gi i ̸∈ D′ .
(1.24)

Proposition 4. We have

w(x) = E
(
g(τD′) +

τD′−1∑
n=0

h(xn)
∣∣∣x0 = x

)
, x ∈ D , (1.25)

where
τD′ = inf

{
n ≥ 0, xn ̸∈ D′} (1.26)

is the first time that the Markov chain leaves D′.

Proof. Let w be the solution to (1.24). For x ̸∈ D′, we have τD′ = 0 and
therefore (1.25) reduces to the second equation in (1.24). Assume now that
x ∈ D′ and consider the Markov chain with x0 = x. It is straightforward
to verify that

w(xn+1) = w(xn)+

M∑
j=1

(
w(j)−w(xn)

)
P(j|xn)+

(
w(xn+1)−

M∑
j=1

w(j)P(j|xn)
)
.

(1.27)
The first equation in (1.24) implies

M∑
j=1

(
w(j)− w(xn)

)
P(j|xn) = −h(xn), xn ∈ D′. (1.28)

Therefore, we can derive

w(xn+1) =w(xn) +

M∑
j=1

(
w(j)− w(xn)

)
P(j|xn) +

(
w(xn+1)−

M∑
j=1

w(j)P(j|xn)
)

=w(xn)− h(xn) +
(
w(xn+1)−

M∑
j=1

w(j)P(j|xn)
)
.

(1.29)
Summing up the above equality from n = 0 to n = τD′ − 1, we obtain

w(xτD′ ) = w(x)−
τD′−1∑
n=0

h(xn)+

τD′−1∑
n=0

(
w(xn+1)−

M∑
j=1

w(j)P(j|xn)
)
. (1.30)

Taking expectation on both sides of the equality above and noticing that
the mean of the last term on the right hand side vanishes, we obtain (1.25).
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Choosing h ≡ 1 and g ≡ 0, we obtain that the solution to the problem

[(P − I)w]i =− 1, i ∈ D′ ,

wi =0 i ̸∈ D′ ,
(1.31)

is given by
w(x) = E

(
τD′

∣∣∣x0 = x
)
, x ∈ D . (1.32)

Definition 3 (Detailed Balnace). The Markov chain satisfies detailed bal-
ance condition with a probability distribution π on D, if

πiPij = πjPji, ∀i, j ∈ D . (1.33)

Lemma 2. If the detailed balance condition holds, then π is invariant.

Proof. For i ∈ D, from (1.33) we have
∑M

j=1 πjPji =
∑M

j=1 πiPij = πi,
which implies P⊤π = π. Therefore, π is invariant.

Define the diagonal matrix Π = diag{π1, π2, . . . , πM}. Introduce the scalar
product

⟨u, v⟩π = u⊤Πv =

M∑
i=1

uiπivi , u, v ∈ RM . (1.34)

Lemma 3. The following claims are equivalent.

1. The Markov chain satisfies detailed balance condition (1.33).

2. ΠP = P⊤Π.

3. ⟨Pu, v⟩π = ⟨u, Pv⟩π, for all u, v ∈ RM .

The second claim can be written as

Π
1
2PΠ− 1

2 = Π− 1
2P⊤Π

1
2 . (1.35)

Therefore, Π
1
2PΠ− 1

2 is symmetric and its all eigenvalues are real. From this we
know that all eigenvalues of P are real as well. Denote them by (assume P is
primitive)

1 = λ1 > λ2 ≥ · · · ≥ λM .

The corresponding left eigenvectors are v1 = π, v2, . . . , vM . We can verify that

v⊤1 1 = 1

v⊤j 1 = v⊤j P1 = λjvj1 =⇒ v⊤j 1 = 0 , j > 1 .
(1.36)

Therefore, for any distribution π(0) ∈ RM , we can write it as π(0) = π +∑M
i=2 αivi, and we have

(Pn)⊤π(0) = π +

M∑
i=2

αiλ
n
i vi = π +

M∑
i=2

αiλ
n
i vi . (1.37)
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Since |λ2|, · · · , |λM | are all smaller than 1, we know that (1.22) holds. Moreo-
ever, the speed of convergence in (1.22) is determined by the magnitude of the
eigenvalue λ2 < 1. The smaller λ2 is, the faster the convergence is.

The following result shows the connection between the left and right eigen-
vectors.

Lemma 4. v is a left eigenvector of P with eigenvalue λ if and only if Π−1v
is a right eigenvector of P with the same eigenvalue λ.

Proof. Using the second claim in Lemma 3, we have

P⊤v = λv

⇐⇒(P⊤Π)Π−1v = λΠ(Π−1v)

⇐⇒(ΠP )Π−1v = λΠ(Π−1v)

⇐⇒P (Π−1v) = λ(Π−1v)

(1.38)

Example. D = {1, 2}.

• Let p11 = 0, p12 = 1, p21 = 1, p22 = 0. Accordingly,

P =

(
0 1
1 0

)
(1.39)

The invariant distribution is π = ( 12 ,
1
2 ).

• Let p11 = 0, p12 = 1, p21 = p22 = 1
2 . Accordingly,

P =

(
0 1
1
2

1
2

)
(1.40)

The invariant distribution is π = ( 13 ,
2
3 ).

• Let p11 = 1, p12 = 0, p21 = 0, p22 = 1. Accordingly,

P =

(
1 0
0 1

)
(1.41)

The Markov chain is not ergodic and any distribution is invariant.

Example (Random walk on graphs). Consider a graph with nodes D =
{1, 2, . . . ,M} and set of edges E. We write i ∼ j if there is an edge
between nodes i and j. The transition probability density is

Pij =

{
d−1
i , i ∼ j

0 , otherwise
(1.42)
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where di is the number of nodes connected to i (i.e. degree of node i). The
Markov chain satisfies the detailed balance condition with the distribution
π, which is defined as πi =

di

2|E| , where |E| is the number of edges of the
graph.
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