Lecture 4: Markov chains and SDEs

2025-05-14

1.1 Timescales and convergence to equilibrium

In this section, we assume that the process X_t in \mathbb{R}^d satisfies the Brownian dynamics

$$dX_t = -\nabla V(X_t) \, dt + \sqrt{2\beta^{-1}} \, dB_t \,, \quad t > 0 \tag{1.1}$$

whose generator is given by

$$\mathcal{L}g = -\nabla V \cdot \nabla g + \frac{1}{\beta} \Delta g \,. \tag{1.2}$$

Recall the Boltzmann density

$$\pi(x) = \frac{1}{Z} e^{-\beta V(x)}, \quad x \in \mathbb{R}^d,$$
(1.3)

where Z is a normalizing constant.

Let us denote by $L^2_{\pi}(\mathbb{R}^d)$ the Hilbert space induced by the weighted scalar product

$$\langle g_1, g_2 \rangle_{\pi} = \int_{\mathbb{R}^d} g_1 g_2 \pi dx = \frac{1}{Z} \int_{\mathbb{R}^d} g_1 g_2 \mathrm{e}^{-\beta V} dx \,, \tag{1.4}$$

for two test functions $g_1, g_2 : \mathbb{R}^d \to \mathbb{R}$.

Lemma 1. We have

$$\langle \mathcal{L}g_1, g_2 \rangle_{\pi} = \langle g_1, \mathcal{L}g_2 \rangle_{\pi} = -\frac{1}{\beta} \int_{\mathbb{R}^d} \nabla g_1 \cdot \nabla g_2 \pi \, dx \,.$$
 (1.5)

Therefore, \mathcal{L} is a self-adjoint operator in $L^2_{\pi}(\mathbb{R}^d)$.

Proof. Let us compute

$$\begin{split} \langle \mathcal{L}g_1, g_2 \rangle_{\pi} &= \frac{1}{Z} \int_{\mathbb{R}^d} \Big(-\nabla V \cdot \nabla g_1 + \frac{1}{\beta} \Delta g_1 \Big) g_2 \, \mathrm{e}^{-\beta V} \, dx \\ &= \frac{1}{Z} \int_{\mathbb{R}^d} \Big[\Big(-\nabla V \cdot \nabla g_1 \Big) g_2 \, \mathrm{e}^{-\beta V} - \frac{1}{\beta} \nabla g_1 \cdot \nabla (g_2 \, \mathrm{e}^{-\beta V}) \Big] dx \\ &= -\frac{1}{\beta} \frac{1}{Z} \int_{\mathbb{R}^d} \nabla g_1 \cdot \nabla g_2 \, \mathrm{e}^{-\beta V} \, dx \\ &= -\frac{1}{\beta} \int_{\mathbb{R}^d} \nabla g_1 \cdot \nabla g_2 \pi \, dx \, . \end{split}$$

Switching g_1 and g_2 , we obtain the first equality in (1.5).

In particular, choosing $g_1 = g_2 = g$, we have

$$-\langle \mathcal{L}g,g\rangle_{\pi} = \frac{1}{\beta} \int_{\mathbb{R}^d} |\nabla g|^2 \pi \, dx \ge 0 \,. \tag{1.6}$$

We study the spectrum of $-\mathcal{L}$. We assume that the spectrum of $-\mathcal{L}$ consists of discrete eigenvalues. Lemma 1 and (1.6) imply that all eigenvalues of $-\mathcal{L}$ are non-negative real numbers. Denote by 1 the constant function whose value equals to 1. Then, we have $-\mathcal{L}\mathbf{1} = 0$, which implies that $\lambda = 0$ is an eigenvalue and $\mathbf{1}$ is the associated eigenfunction. Assume that all the eigenvalues are ordered as ($\lambda = 0$ is simple)

$$0 = \lambda_0 < \lambda_1 \le \lambda_2 \le \dots , \tag{1.7}$$

and the corresponding eigenfunctions are $\varphi_0 = \mathbf{1}, \varphi_1, \varphi_2, \ldots$ Without loss of generosity, we assume that φ_i are normalized, i.e. $|\varphi_i|_{\pi}^2 = \int_{\mathbb{R}^d} \varphi_i^2 \pi dx = 1$, for $i = 0, 1, 2, \cdots$, such that $\varphi_0, \varphi_1, \varphi_2, \ldots$ form an orthonormal basis of $L^2_{\pi}(\mathbb{R}^d)$, that is, $\langle \varphi_i, \varphi_j \rangle_{\pi} = \delta_{ij}$, for $i, j = 0, 1, \ldots$

Recall that the semigroup

$$(T_t g)(x) = \mathbb{E}[g(X_t)|X_0 = x], \quad x \in \mathbb{R}^d.$$

$$(1.8)$$

satisfies

$$\frac{d}{dt}T_tg = \mathcal{L}T_tg\,,\tag{1.9}$$

which implies $T_t g = e^{t\mathcal{L}}$. Therefore, the eigenvalues of T_t are $\nu_i = e^{-\lambda_i t}$, with

$$1 = \nu_0 > \nu_1 \ge \nu_2 \ge \dots . \tag{1.10}$$

For a function g, with $g = \sum_{i=0}^{+\infty} \langle g, \varphi_i \rangle_{\pi} \varphi_i$, we have

$$\mathbb{E}[g(X_t)|X_0 = x]$$

$$=(T_tg)(x)$$

$$=(e^{t\mathcal{L}}g)(x)$$

$$=\sum_{i=0}^{+\infty} \langle g, \varphi_i \rangle_{\pi} (e^{t\mathcal{L}}\varphi_i)(x)$$

$$=\sum_{i=0}^{+\infty} \langle g, \varphi_i \rangle_{\pi} e^{-\lambda_i t} \varphi_i(x)$$

$$=\mathbb{E}_{\pi}(g) + \sum_{i=1}^{+\infty} \langle g, \varphi_i \rangle_{\pi} e^{-\lambda_i t} \varphi_i(x)$$
(1.11)

Hence, the derivation above shows that $\mathbb{E}[g(X_t)|X_0 = x]$ converges to $\mathbb{E}_{\pi}(g)$ and the speed of convergence is dominated by the eigenvalue λ_1 . The larger λ_1 is, the faster the convergence is.

Let us denote by

$$\mathcal{H}^1 := \left\{ g \in L^2_{\pi}(\mathbb{R}^d) \middle| \int_{\mathbb{R}^d} g \, \pi dx = 0, \int_{\mathbb{R}^d} |\nabla g|^2 \pi dx < \infty \right\}.$$
(1.12)

Proposition 1 (Variational principle).

$$\lambda_1 = \min_{g \in \mathcal{H}^1} \frac{\frac{1}{\beta} \int_{\mathbb{R}^d} |\nabla g|^2 \pi \, dx}{\int_{\mathbb{R}^d} g^2 \pi \, dx} \,. \tag{1.13}$$

Proof. For any $g \in \mathcal{H}^1$, we have $\langle g, \mathbf{1} \rangle_{\pi} = \int_{\mathbb{R}^d} g \pi dx = 0$. Let us consider the expansion $g = \sum_{i=1}^{+\infty} w_i \varphi_i$. For the denominator, using the fact that $\langle \varphi_i, \varphi_j \rangle_{\pi} = \delta_{ij}$, we have

$$\int_{\mathbb{R}^d} g^2 \pi \, dx = \langle g, g \rangle_\pi = \langle \sum_{i=1}^{+\infty} w_i \varphi_i, \sum_{i=1}^{+\infty} w_i \varphi_i \rangle_\pi = \sum_{i=1}^{+\infty} w_i^2.$$
(1.14)

For the numerator, we have

$$\frac{1}{\beta} \int_{\mathbb{R}^d} |\nabla g|^2 \pi \, dx = \langle -\mathcal{L}g, g \rangle_{\pi} \\
= \left\langle -\mathcal{L} \sum_{i=1}^{+\infty} w_i \varphi_i, \sum_{i=1}^{+\infty} w_i \varphi_i \right\rangle_{\pi} \\
= \left\langle \sum_{i=1}^{+\infty} w_i (-\mathcal{L}) \varphi_i, \sum_{i=1}^{+\infty} w_i \varphi_i \right\rangle_{\pi} \\
= \left\langle \sum_{i=1}^{+\infty} w_i \lambda_i \varphi_i, \sum_{i=1}^{+\infty} w_i \varphi_i \right\rangle_{\pi} \\
= \sum_{i=1}^{+\infty} w_i^2 \lambda_i \\
\ge \lambda_1 \sum_{i=1}^{+\infty} w_i^2 \\
= \lambda_1 \int_{\mathbb{R}^d} g^2 \pi \, dx$$
(1.15)

Therefore, we have

$$\frac{1}{\beta} \int_{\mathbb{R}^d} |\nabla g|^2 \pi \, dx \ge \lambda_1 \sum_{i=1}^{+\infty} w_i^2 = \lambda_1 \int_{\mathbb{R}^d} g^2 \pi \, dx$$

or

$$\lambda_1 \le \frac{\frac{1}{\beta} \int_{\mathbb{R}^d} |\nabla g|^2 \pi \, dx}{\int_{\mathbb{R}^d} g^2 \pi \, dx} \, .$$

On the other hand, taking $g = \varphi_1$ and using (1.6), we have

$$\frac{1}{\beta} \int_{\mathbb{R}^d} |\nabla g|^2 \pi \, dx = \langle -\mathcal{L}g, g \rangle_{\pi} = \lambda_1 \int_{\mathbb{R}^d} g^2 \pi \, dx$$

which shows that the equality in (1.13) can be attained.

1.2 Markov chains

Consider the set $\mathcal{D} = \{1, 2, \dots, M\}$, where M > 1. A Markov chain is a discretein-time Markovian process. Denote by P_n the $M \times M$ probability matrix at *n*th step for $n \ge 0$, whose entries are $\mathbb{P}(x_{n+1} = j | x_n = i)$, for $i, j \in \mathcal{D}$. The fact that the row sum of P_n equals one can be expressed as

$$P_n \mathbb{1} = \mathbb{1}, \qquad (1.16)$$

where $\mathbb{1} \in \mathbb{R}^M$ denotes the vector with all elements equal to one.

Let $\pi^{(n)}$ be the distribution of the Markov chain at *n*th step, that is, $\pi_i^{(n)} = \mathbb{P}(x_n = i)$, for $i \in \mathcal{D}$. In particular, $\pi^{(0)}$ is the initial distribution of the state x_0 at step n = 0.

Proposition 2.

$$\pi^{(n+1)} = P_n^{\top} \pi^{(n)} \,. \tag{1.17}$$

Proof. For $i \in \mathcal{D}$, we have

$$\pi_{i}^{(n+1)} = \mathbb{P}(x_{n+1} = i)$$

$$= \sum_{j=1}^{M} \mathbb{P}(x_{n+1} = i, x_n = j)$$

$$= \sum_{j=1}^{M} \mathbb{P}(x_{n+1} = i | x_n = j) \mathbb{P}(x_n = j)$$

$$= \sum_{j=1}^{M} (P_n)_{ji} \pi_{j}^{(n)}.$$

The equation (1.17) is called master equation. It also implies that, for any $0 \le n_1 < n$, we have

$$\pi^{(n)} = (P_{n_1} P_{n_1+1} \cdots P_{n-1})^\top \pi^{(n_1)} .$$
(1.18)

In particular, choosing $n_1 = 0$, we have

$$\pi^{(n)} = \left(\prod_{l=0}^{n-1} P_l\right)^{\top} \pi^{(0)} .$$
(1.19)

In the following, we assume that the Markov chain is time-homogeneous, i.e. the probabilities $\mathbb{P}(x_{n+1} = j | x_n = i)$ are independent of n, and we denote its probability matrix by P. In this case, (1.16) implies that $\lambda = 1$ is an eigenvalue of P and $\mathbb{1}$ is the corresponding (right) eigenvector. (1.19) becomes

$$\pi^{(n)} = (P^n)^{\dagger} \pi^{(0)}, \quad n \ge 0.$$
 (1.20)

Definition 1. Assume that the Markov chain is time-homogeneous. A dis-

tribution π is invariant, if

$$\pi_i = \sum_{j=1}^M \pi_j P_{ji}, \quad \text{or, } \pi = P^\top \pi.$$
 (1.21)

Therefore, π is a invariant distribution, if and only if π is a (non-negative) left eigenvector of P corresponding to the eigenvalue $\lambda = 1$.

Definition 2. The Markov chain is ergodic, if there is a distribution π , such that

$$\lim_{n \to +\infty} (P^n)^{\top} \pi^{(0)} = \pi \,, \tag{1.22}$$

for all initial distribution $\pi^{(0)}$.

Proposition 3. Let π be the limiting distribution in Definition 2, then π is the unique invariant distribution of the Markov chain.

Proof. On the one hand, choosing $\pi^{(0)} = \pi$, from (1.22) we have

$$\pi = \lim_{n \to +\infty} (P^n)^\top \pi = P^\top \lim_{n \to +\infty} (P^{n-1})^\top \pi = P^\top \pi.$$

Hence, π is invariant. On the other hand, let π' be an invariant distribution, then we have $(P^n)^{\top}\pi' = (P^{n-1})^{\top}\pi' = \cdots = \pi'$. Therefore,

$$\tau = \lim_{n \to +\infty} (P^n)^\top \pi' = \pi'$$

which shows that π is unique.

τ

We say P is a primitive matrix, if there exists $n \ge 1$ such that all entries of P^n are positive. This means that, for any two states $i, j \in \mathcal{D}$, the probability of reaching j in n steps starting from i is positive.

Theorem 1 (Perron-Frobenius Theorem). Assume that *P* is primitive. Then,

- 1. $\lambda = 1$ is an eigenvalue of P and any other eigenvalues λ is strictly smaller than 1.
- 2. $\lambda = 1$ is simple, i.e. the eigenspace associated to $\lambda = 1$ is one-dimensional.
- 3. There exists an eigenvector $v \in \mathbb{R}^M$ with eigenvalue $\lambda = 1$ such that all components of v are positive and $P^{\top}v = v$.
- 4. $\lim_{n \to \infty} P^n = \mathbb{1} v^\top.$

The eigenvector v is called Perron eigenvector or principal eigenvector. Notice that $\mathbb{1}^{\top}\pi^{(0)} = 1$ for any probability distribution $\pi^{(0)}$. From the last claim in Theorem 1, we can derive

$$\lim_{n \to +\infty} (P^n)^\top \pi^{(0)} = v \mathbb{1}^\top \pi^{(0)} = v \,. \tag{1.23}$$

5

Therefore, Theorem 1 implies that, when P is primitive, the Markov chain is ergodic and v is the unique invariant distribution.

Let $h, g: \mathcal{D} \to \mathbb{R}$ and $\mathcal{D}' \subset \mathcal{D}$ be a subset of \mathcal{D} . Consider the problem

$$[(P-I)w]_i = -h_i, \quad i \in \mathcal{D}', w_i = g_i \quad i \notin \mathcal{D}'.$$

$$(1.24)$$

Proposition 4. We have

$$w(x) = \mathbb{E}\Big(g(\tau_{D'}) + \sum_{n=0}^{\tau_{D'}-1} h(x_n) \Big| x_0 = x\Big), \quad x \in \mathcal{D}, \quad (1.25)$$

where

$$\tau_{D'} = \inf\left\{n \ge 0, x_n \notin \mathcal{D}'\right\}$$
(1.26)

is the first time that the Markov chain leaves \mathcal{D}' .

Proof. Let w be the solution to (1.24). For $x \notin \mathcal{D}'$, we have $\tau_{\mathcal{D}'} = 0$ and therefore (1.25) reduces to the second equation in (1.24). Assume now that $x \in \mathcal{D}'$ and consider the Markov chain with $x_0 = x$. It is straightforward to verify that

$$w(x_{n+1}) = w(x_n) + \sum_{j=1}^{M} \left(w(j) - w(x_n) \right) \mathbb{P}(j|x_n) + \left(w(x_{n+1}) - \sum_{j=1}^{M} w(j) \mathbb{P}(j|x_n) \right)$$
(1.27)

The first equation in (1.24) implies

$$\sum_{j=1}^{M} \left(w(j) - w(x_n) \right) \mathbb{P}(j|x_n) = -h(x_n), \quad x_n \in \mathcal{D}'.$$
(1.28)

Therefore, we can derive

$$w(x_{n+1}) = w(x_n) + \sum_{j=1}^{M} (w(j) - w(x_n)) \mathbb{P}(j|x_n) + \left(w(x_{n+1}) - \sum_{j=1}^{M} w(j) \mathbb{P}(j|x_n)\right)$$
$$= w(x_n) - h(x_n) + \left(w(x_{n+1}) - \sum_{j=1}^{M} w(j) \mathbb{P}(j|x_n)\right).$$
(1.29)

Summing up the above equality from n = 0 to $n = \tau_{D'} - 1$, we obtain

$$w(x_{\tau_{D'}}) = w(x) - \sum_{n=0}^{\tau_{D'}-1} h(x_n) + \sum_{n=0}^{\tau_{D'}-1} \left(w(x_{n+1}) - \sum_{j=1}^{M} w(j) \mathbb{P}(j|x_n) \right).$$
(1.30)

Taking expectation on both sides of the equality above and noticing that the mean of the last term on the right hand side vanishes, we obtain (1.25).

Choosing $h \equiv 1$ and $g \equiv 0$, we obtain that the solution to the problem

$$[(P-I)w]_i = -1, \quad i \in \mathcal{D}',$$

$$w_i = 0 \quad i \notin \mathcal{D}',$$
(1.31)

is given by

$$w(x) = \mathbb{E}\big(\tau_{D'} \,\Big| \, x_0 = x\big), \quad x \in \mathcal{D} \,. \tag{1.32}$$

Definition 3 (Detailed Balnace). The Markov chain satisfies detailed balance condition with a probability distribution π on \mathcal{D} , if

$$\pi_i P_{ij} = \pi_j P_{ji}, \quad \forall i, j \in \mathcal{D}.$$
(1.33)

Lemma 2. If the detailed balance condition holds, then π is invariant.

Proof. For $i \in \mathcal{D}$, from (1.33) we have $\sum_{j=1}^{M} \pi_j P_{ji} = \sum_{j=1}^{M} \pi_i P_{ij} = \pi_i$, which implies $P^{\top} \pi = \pi$. Therefore, π is invariant.

Define the diagonal matrix $\Pi = \text{diag}\{\pi_1, \pi_2, \ldots, \pi_M\}$. Introduce the scalar product М

$$\langle u, v \rangle_{\pi} = u^{\top} \Pi v = \sum_{i=1}^{M} u_i \pi_i v_i, \quad u, v \in \mathbb{R}^M.$$
 (1.34)

Lemma 3. The following claims are equivalent.

- The Markov chain satisfies detailed balance condition (1.33).
 ΠP = P^TΠ.
 ⟨Pu,v⟩_π = ⟨u, Pv⟩_π, for all u, v ∈ ℝ^M.

The second claim can be written as

$$\Pi^{\frac{1}{2}} P \Pi^{-\frac{1}{2}} = \Pi^{-\frac{1}{2}} P^{\top} \Pi^{\frac{1}{2}} . \tag{1.35}$$

Therefore, $\Pi^{\frac{1}{2}} P \Pi^{-\frac{1}{2}}$ is symmetric and its all eigenvalues are real. From this we know that all eigenvalues of P are real as well. Denote them by (assume P is primitive)

$$1 = \lambda_1 > \lambda_2 \ge \cdots \ge \lambda_M.$$

The corresponding left eigenvectors are $v_1 = \pi, v_2, \ldots, v_M$. We can verify that

$$v_1^{\top} \mathbb{1} = 1$$

$$v_j^{\top} \mathbb{1} = v_j^{\top} P \mathbb{1} = \lambda_j v_j \mathbb{1} \Longrightarrow v_j^{\top} \mathbb{1} = 0, \quad j > 1.$$
(1.36)

Therefore, for any distribution $\pi^{(0)} \in \mathbb{R}^M$, we can write it as $\pi^{(0)} = \pi + \sum_{i=2}^M \alpha_i v_i$, and we have

$$(P^{n})^{\top}\pi^{(0)} = \pi + \sum_{i=2}^{M} \alpha_{i}\lambda_{i}^{n}v_{i} = \pi + \sum_{i=2}^{M} \alpha_{i}\lambda_{i}^{n}v_{i}.$$
(1.37)

7

Since $|\lambda_2|, \dots, |\lambda_M|$ are all smaller than 1, we know that (1.22) holds. Moreoever, the speed of convergence in (1.22) is determined by the magnitude of the eigenvalue $\lambda_2 < 1$. The smaller λ_2 is, the faster the convergence is.

The following result shows the connection between the left and right eigenvectors.

Lemma 4. v is a left eigenvector of P with eigenvalue λ if and only if $\Pi^{-1}v$ is a right eigenvector of P with the same eigenvalue λ .

Proof. Using the second claim in Lemma 3, we have

$$P^{\top}v = \lambda v$$

$$\iff (P^{\top}\Pi)\Pi^{-1}v = \lambda\Pi(\Pi^{-1}v)$$

$$\iff (\Pi P)\Pi^{-1}v = \lambda\Pi(\Pi^{-1}v)$$

$$\iff P(\Pi^{-1}v) = \lambda(\Pi^{-1}v)$$

(1.38)

Example. $\mathcal{D} = \{1, 2\}.$

• Let $p_{11} = 0, p_{12} = 1, p_{21} = 1, p_{22} = 0$. Accordingly,

$$P = \begin{pmatrix} 0 & 1\\ 1 & 0 \end{pmatrix} \tag{1.39}$$

The invariant distribution is $\pi = (\frac{1}{2}, \frac{1}{2})$.

• Let $p_{11} = 0, p_{12} = 1, p_{21} = p_{22} = \frac{1}{2}$. Accordingly,

$$P = \begin{pmatrix} 0 & 1\\ \frac{1}{2} & \frac{1}{2} \end{pmatrix} \tag{1.40}$$

The invariant distribution is $\pi = (\frac{1}{3}, \frac{2}{3}).$

• Let $p_{11} = 1, p_{12} = 0, p_{21} = 0, p_{22} = 1$. Accordingly,

$$P = \begin{pmatrix} 1 & 0\\ 0 & 1 \end{pmatrix} \tag{1.41}$$

The Markov chain is not ergodic and any distribution is invariant.

Example (Random walk on graphs). Consider a graph with nodes $\mathcal{D} = \{1, 2, \ldots, M\}$ and set of edges E. We write $i \sim j$ if there is an edge between nodes i and j. The transition probability density is

$$P_{ij} = \begin{cases} d_i^{-1}, & i \sim j \\ 0, & \text{otherwise} \end{cases}$$
(1.42)

where d_i is the number of nodes connected to i (i.e. degree of node i). The Markov chain satisfies the detailed balance condition with the distribution π , which is defined as $\pi_i = \frac{d_i}{2|E|}$, where |E| is the number of edges of the graph.