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1.1 Timescales and convergence to equilibrium

In this section, we assume that the process X; in R? satisfies the Brownian
dynamics

dXt = *VV(Xt) dt + \/ 2,671dBt s t>0 (11)

whose generator is given by
Lg = fVV~Vg+%Ag. (1.2)
Recall the Boltzmann density
m(z) = le*ﬂvm, z € RY, (1.3)
where Z is a normalizing constant.

Let us denote by L2(R?) the Hilbert space induced by the weighted scalar
product

1 _
(91, 92)x :/ g1gemdr = E/ g1g2¢ PVdz (1.4)
R4 R4

for two test functions g1, ¢g» : R — R.

Lemma 1. We have

(Lg1,92)7 = (91, LG2)rn = _%/

Vg, - Vgordx. (1.5)
Rd

Therefore, £ is a self-adjoint operator in L2 (R%).

Proof. Let us compute

1 1
_ _ . - -8V
(Lg1,92)x =7 /Rd ( VV -Vg + ﬂAgl)gge dz
1 1
2 [(—=VV-Vg)ge Vo V(oo )] ds
L1 / Vg1 -Vge ?Vd
=——= . e x
BZ Jpu "IV
1
z—f/ Vg1 -Vgordz.
B Jra
Switching ¢g; and g2, we obtain the first equality in (1.5). O

In particular, choosing g1 = ¢g» = g, we have

1
~(Lo.9)r =5 | [Valmda 0. (1.6

We study the spectrum of —L£. We assume that the spectrum of —£L consists
of discrete eigenvalues. Lemma 1 and (1.6) imply that all eigenvalues of —L
are non-negative real numbers. Denote by 1 the constant function whose value
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equals to 1. Then, we have —£1 = 0, which implies that A = 0 is an eigenvalue
and 1 is the associated eigenfunction. Assume that all the eigenvalues are
ordered as (A = 0 is simple)

OZ)\0<)\1§/\2S..., (17)
and the corresponding eigenfunctions are ¢g = 1,1, p2,.... Without loss of
generosity, we assume that ¢; are normalized, i.e. |p;|2 = fRd pindx = 1, for
i=0,1,2,---, such that oo, 1, ®2,... form an orthonormal basis of L2(R%),

that is, (@s, )z = 0i5, for 4,5 =0,1,....
Recall that the semigroup

(Tyg)(z) = E[g(X:)| X0 = 2], z€RZ. (1.8)
satisfies J
—Tyg= LT 1.
5 119 LTy, (1.9)

which implies T;g = e** . Therefore, the eigenvalues of T} are v; = e~ Mt with
l=yy>v1 > >.... (1.10)

For a function g, with g = 3% (9, ;) r s, we have

i=0 (1.11)

+oo
=E.(g9) + Z@’ Qi)ne i (z)

Hence, the derivation above shows that E[g(X;)|Xo = x] converges to E.(g)
and the speed of convergence is dominated by the eigenvalue A\;. The larger \;
is, the faster the convergence is.

Let us denote by

H = {ge L,%(Rd)’/ gmdy = o,/ [Vgl*rde < oo} (1.12)
R4 R4

Proposition 1 (Variational principle).

1 2
= Vg|?mdx
)\1 = min —ﬁ f]Rd | ‘

1.13
geHl  [pa g?mdx (1.13)
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Proof. For any g € H!, we have (g,1), fRd grdxr = 0. Let us consider

the expansion g = 2:;1 w;p;. For the denominator, using the fact that
<<Pia Sﬁj>7r = 51;]‘, we have

+oo
/ g 7TdJJ - g g sz@zazwz@z T = Zw? (114)
I i=1

For the numerator, we have

5 | IValmde ~(~£9.0),

=<sz o 3w,

=<sz z%,zwlm (1.15)
:Z;w?a-

+oo
S
i=1
:)\1/ ¢*mdx
Rd
Therefore, we have
—+oo
/ |Vg|*n dz > Alzw = )\1/ g*ndzx,
B P Rd
ot 1 2
A < B‘[Rd \Vg| Tdx
1= 2
Jga 9?7 dx
On the other hand, taking g = ¢ and using (1.6), we have
1 2 2
n |Vg| Trdl":<_£gyg>7'(:)‘1 g 7Td1?7
B R4 Rd
which shows that the equality in (1.13) can be attained. O

1.2 Markov chains

Consider the set D = {1,2,--- , M}, where M > 1. A Markov chain is a discrete-
in-time Markovian process. Denote by P, the M x M probability matrix at nth
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step for n > 0, whose entries are P(z,,+1 = jlz, = 1), for i, j € D. The fact that
the row sum of P, equals one can be expressed as

P1=1, (1.16)

where 1 € RM™ denotes the vector with all elements equal to one.

Let 7(™) be the distribution of the Markov chain at nth step, that is, wgn) =
P(z,, = 1), for i € D. In particular, 7(?) is the initial distribution of the state
xo at step n = 0.

Proposition 2.
() = pTrm) (1.17)

Proof. For i € D, we have

—~

7T§n+1) P Tp+1 = Z)

M=

P(xn-i-l =14, Ty = .])

.
Il
-

M=

P(xpi1 = i|lz, = J)P(z, = J)

.
Il
_

(Pn)ﬂ’ﬂ';n) .

M-

.
I
iy

O

The equation (1.17) is called master equation. It also implies that, for any
0 < ny; < n, we have

7" = (Pp, Payy1- - Poy) "™ (1.18)

In particular, choosing n; = 0, we have

n—1
7 = ( I1 B)TW(O) . (1.19)
=0

In the following, we assume that the Markov chain is time-homogeneous, i.e.
the probabilities P(z,,+1 = jlx, = i) are independent of n, and we denote its
probability matrix by P. In this case, (1.16) implies that A = 1 is an eigenvalue
of P and 1 is the corresponding (right) eigenvector. (1.19) becomes

w0 = (P) 2O >0, (1.20)

Definition 1. Assume that the Markov chain is time-homogeneous. A dis-
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tribution 7 is invariant, if

M
Fi:Zﬂ'ijiv or, F:PTﬂ'. (1.21)
j=1
Therefore, 7 is a invariant distribution, if and only if 7 is a (non-negative) left
eigenvector of P corresponding to the eigenvalue A\ = 1.

Definition 2. The Markov chain is ergodic, if there is a distribution 7, such
that
lim (P) 7@ =nx, (1.22)

n—-+o0o

for all initial distribution 7(©).

Proposition 3. Let 7 be the limiting distribution in Definition 2, then 7 is
the unique invariant distribution of the Markov chain.

Proof. On the one hand, choosing 7(?) = 7, from (1.22) we have

7= lim (P")'7#=P" lim (P )Tn=P'x.

n—-+oo n—-+oo

Hence, 7 is invariant. On the other hand, let 7’ be an invariant distribution,

then we have (P")T 7/ = (P 1)Tn’ = ... = /. Therefore,
= lim (P")"x =7,
n——+4oo
which shows that 7 is unique. O

We say P is a primitive matrix, if there exists n > 1 such that all entries of
P™ are positive. This means that, for any two states i, j € D, the probability of
reaching j in n steps starting from ¢ is positive.

Theorem 1 (Perron-Frobenius Theorem). Assume that P is primitive. Then,

1. A = 1 is an eigenvalue of P and any other eigenvalues X is strictly
smaller than 1.

2. X = 1 is simple, i.e. the eigenspace associated to A = 1 is one-
dimensional.

3. There exists an eigenvector v € RM with eigenvalue A = 1 such that
all components of v are positive and PTv = v.

4. lim P" = 1v"'.

n—roo

The eigenvector v is called Perron eigenvector or principal eigenvector. No-
tice that 1T 7(®) = 1 for any probability distribution 7(?). From the last claim
in Theorem 1, we can derive

lim (P") 7@ =177 =y, (1.23)

n—-+oo
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Therefore, Theorem 1 implies that, when P is primitive, the Markov chain is
ergodic and v is the unique invariant distribution.
Let h,g: D — R and D’ C D be a subset of D. Consider the problem

[(P*I)w}zifh“ iED/,

1.24
Ww; =4g; 1 ¢ 'D/ . ( )
Proposition 4. We have
Tpr—1
w(z) = ( TD') Z h(zn)|zo = x) zeD, (1.25)
where
mpr =inf {n >0,z, ¢ D'} (1.26)

is the first time that the Markov chain leaves D’.

Proof. Let w be the solution to (1.24). For = ¢ D’, we have 7p- = 0 and
therefore (1.25) reduces to the second equation in (1.24). Assume now that
2 € D’ and consider the Markov chain with zg = z. It is straightforward
to verify that

M M
w(Tpt1) = w(z, —|—Z z) ) P(j|zn) ( (Tpt1) Zw P(j|zn) ) .
j=1

j=1
(1.27)
The first equation in (1.24) implies
M
> (w(G) — w(zn))P(len) = —h(xn), Tn €D (1.28)
j=1
Therefore, we can derive
M M
W(zni1) =w(@n) + 3 () = w(za)B(ilen) + (w(Ens1) = 3 w()P(ln))
j=1 j=1
M
=w(zy) — h(z,) + ( w(Tpt1) Zw P(j|z,) ) .
g=il
(1.29)
Summing up the above equality from n = 0 to n = 7p, — 1, we obtain
Tpl— 1 TD/—l M
w(z,,,) = w(x Z h(zn)+ Y ( (@ni1)— Y w(G)P(lzn) ) - (1.30)
n=0 j=1

Taking expectation on both sides of the equality above and noticing that
the mean of the last term on the right hand side vanishes, we obtain (1.25).
O
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Choosing h = 1 and g = 0, we obtain that the solution to the problem

P—Tuw);=-1, ieD,

(P~ D=1, i "
w; =0 i€ D,

is given by

w(z) = E(rp

zg=x), ze€D. (1.32)
Definition 3 (Detailed Balnace). The Markov chain satisfies detailed bal-
ance condition with a probability distribution 7 on D, if

WiPij = 7Tiji7 Vi,j €D. (133)

Lemma 2. If the detailed balance condition holds, then 7 is invariant.

Proof. For i € D, from (1.33) we have ij:l Tl = ij:l mP; = m,
which implies PT7 = 7. Therefore, 7 is invariant. O
Define the diagonal matrix II = diag{my,m2,...,mar}. Introduce the scalar
product
M
(U, v)r = u' Ilv = Zumivi, u,v € RM . (1.34)

i=1

Lemma 3. The following claims are equivalent.
1. The Markov chain satisfies detailed balance condition (1.33).
2. IP = PTII.

3. (Pu,v)r = (u, Pv), for all u,v € RM.

The second claim can be written as
M:PI 2 =I1"2PTII= . (1.35)

Therefore, Iz PII" % is symmetric and its all eigenvalues are real. From this we
know that all eigenvalues of P are real as well. Denote them by (assume P is
primitive)
1=X>X>-- 2> Ay
The corresponding left eigenvectors are v; = m,vg,...,vy. We can verify that
v 1=1

1.36
o] 1=v]Pl=X\v;1=0/1=0, j>1. (:50)

Therefore, for any distribution 7(©) € R™, we can write it as 7(9) = 7 +
Zij\ig o;v;, and we have

M M
(P)TrD =7+ aidfvi =7+ > aidjv; . (1.37)
=2 1=2
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Since |Az|,- - ,|Anm| are all smaller than 1, we know that (1.22) holds. Moreo-
ever, the speed of convergence in (1.22) is determined by the magnitude of the
eigenvalue A\ < 1. The smaller A, is, the faster the convergence is.

The following result shows the connection between the left and right eigen-
vectors.

Lemma 4. v is a left eigenvector of P with eigenvalue X if and only if II1v
is a right eigenvector of P with the same eigenvalue A.

Proof. Using the second claim in Lemma 3, we have

PTo =)
<:>(PTH)1:I_1U = AH(l:I_lv) (138)
= (IP)IIT v = XII(IT" ')
=PI o) = NI 1)
O

Example. D = {1, 2}.

e Let p11 = 0,p12 = 1,p21 = 1,pa2 = 0. Accordingly,

j (? é) (1.39)

The invariant distribution is = = (3, 1).

e Let p11 = 0,p12 = 1, pa1 = paz = 5. Accordingly,

o

The invariant distribution is 7 = (

2

= O

}) (1.40)

,3)-

e Let p11 = 1,p12 = 0,p21 = 0,p22 = 1. Accordingly,

j ((1) (1)) (1.41)

The Markov chain is not ergodic and any distribution is invariant.

W=

Example (Random walk on graphs). Consider a graph with nodes D =
{1,2,...,M} and set of edges F. We write i ~ j if there is an edge
between nodes ¢ and j. The transition probability density is

A=Y i~
p._Jdi s i~

As = 1.42
’ {0 , otherwise ( )
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where d; is the number of nodes connected to i (i.e. degree of node 7). The
Markov chain satisfies the detailed balance condition with the distribution
7, which is defined as m; = 2“%‘, where |E| is the number of edges of the

graph.




