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1.1 Variational principle
Let Xt be a reversible process in Rd and assume that Xt is ergodic with respect
to a unique invariant density π. The associated semigroup is defined as

(Ttg)(x) = E[g(Xt)|X0 = x], x ∈ Rd . (1.1)

Recall that we have

1. Tt+sg = Tt ◦ Tsg, for g ∈ L2
π(Rd) and t, s ≥ 0,

2. ⟨Ttg1, g2⟩π = ⟨g1, Ttg2⟩π,

where the second claim follows from the reversibility of Xt, and L2
π(Rd) is the

Hilbert space induced by the weighted scalar product

⟨g1, g2⟩π =

∫
Rd

g1g2πdx , g1, g2 : Rd → R . (1.2)

Let us fix τ > 0 and denote the eigenvalues of Tτ by

1 = ν1 > ν2 ≥ ν3 ≥ . . . , (1.3)

and the corresponding eigenfunctions are φ0 = 1, φ1, φ2, . . . .
We know the following result from the previous lecture.

Theorem 1 (Variational principle).

ν2 = max
g∈L2

π(Rd),⟨g,1⟩π=0

⟨Tτg, g⟩π
⟨g, g⟩π

. (1.4)

The following lemma allows us to express the numerator in (1.4) more ex-
plicitly.

Lemma 1. For all g1, g2 ∈ L2
π(Rd), we have

⟨Tτg1, g2⟩π = EX0∼π

[
g1(Xτ )g2(X0)

]
= EX0∼π

[
g1(X0)g2(Xτ )

]
. (1.5)

Proof. Using (1.1) and (1.2), we can derive

⟨Tτg1, g2⟩π =

∫
Rd

(Tτg1)g2πdx

=

∫
Rd

E[g1(Xτ )|X0 = x]g2(x)π(x)dx

=

∫
Rd

E[g1(Xτ )g2(X0)|X0 = x]π(x)dx

=EX0∼π

[
g1(Xτ )g2(X0)

]
,

(1.6)
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which implies the first equality in (1.5). Similarly, we have

⟨g1, Tτg2⟩π = EX0∼π

[
g1(X0)g2(Xτ )

]
. (1.7)

Since Tt is self-adjoint, i.e. ⟨Tτg1, g2⟩π = ⟨g1, Ttg2⟩π, we conclude that the
right hands sides of (1.6) and (1.7) are equal, which implies the second
equality in (1.5).
Therefore, the identity (1.4) in Theorem 1 can be written explicitly as

ν2 = max
g∈L2

π(Rd), ⟨g,1⟩π=0

EX0∼π

[
g(X0)g(Xτ )

]
Eπ(g2)

. (1.8)

1.2 Markov state models
Let us consider a decomposition of the space Rd by disjoint subsets

D1, D2, . . . , DM ⊂ Rd,

such that
M⋃
i=1

Di = Rd, and Di ∩Dj = ∅, 1 ≤ i ̸= j ≤ M .
(1.9)

We solve the optimization problem in (1.8) using functions of the form

g(x) =

M∑
i=1

ωi1Di
(x) , x ∈ Rd , ω = (ω1, . . . , ωM )⊤ ∈ RM , (1.10)

where 1Di
(x) denotes the indicator function associated to the set Di.

Define π̂ = (π̂1, . . . , π̂M )⊤ ∈ RM , where

π̂i = Ex∼π

[
1Di

(x)
]
=

∫
Rd

1Di
(x)π(x)dx . (1.11)

Since the sets D1, D2, . . . , DM form a disjoint decomposition of Rd (see (1.9)),
we have

M∑
i=1

π̂i =

M∑
i=1

∫
Rd

1Di
(x)π(x)dx =

∫
Rd

π(x)dx = 1 . (1.12)

Computing the expectations in (1.8) using (1.10), we have the following
result.

Lemma 2. For functions g in (1.10), we have the following expressions.

1. ⟨g,1⟩π = Eπg =
∑M

i=1 ωiπ̂i .

2. Eπg
2 =

∑M
i=1 ω

2
i π̂i .

3. EX0∼π

[
g(Xτ )g(X0)

]
=

∑M
i,j=1 ωiωjEX0∼π

[
1Di(X0)1Dj (Xτ )

]
.
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Proof. The first and the third claims follow directly using the expression
of g in (1.10). For the second, using the fact that Di form a disjoint
decomposition of Rd (see (1.9)), we have

Eπg
2 =

∫
Rd

g2(x)π(x)dx

=

M∑
i,j=1

ωiωj

∫
Rd

1Di
(x)1Dj

(x)π(x)dx

=

M∑
i=1

ω2
i

∫
Rd

1Di
(x)π(x)dx

=

M∑
i=1

ω2
i π̂i .

Let us define the matrix P̂ ∈ RM×M whose entries are

P̂ij =
EX0∼π

[
1Di(X0)1Dj (Xτ )

]
Ex∼π

[
1Di

(x)
] , 1 ≤ i, j ≤ M . (1.13)

We have the following result.

Lemma 3. The matrix P̂ satisfies the following two properties.

1.
∑M

j=1 P̂ij = 1, for 1 ≤ i ≤ M .

2. π̂iP̂ij = π̂jP̂ji, for all 1 ≤ i, j ≤ M .

Proof. Concerning the first claim, using (1.13) and the fact that the sets
Dj form a disjoint decomposition of Rd (see (1.9)), we have

M∑
j=1

P̂ij =

M∑
j=1

EX0∼π

[
1Di(X0)1Dj (Xτ )

]
Ex∼π

[
1Di

(x)
]

=
EX0∼π

[
1Di

(X0)
]

Ex∼π

[
1Di

(x)
]

=1 .

Concerning the second claim, using (1.13) and the second equality in
Lemma 1, we have

π̂iP̂
(M)
ij = EX0∼π

[
1Di

(X0)1Dj
(Xτ )

]
= EX0∼π

[
1Di

(Xτ )1Dj
(X0)

]
= π̂jP̂ji .

The first claim of Lemma 3 implies that P̂ is a probability matrix, which
defines a Markov chain on the finite space D = {1, 2, . . . ,M}. The second
claim implies that the Markov chain satisfies detailed balance condition with
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the stationary distribution π̂, defined in (1.11).
Let us define inner product in RM weighted by π̂ as

⟨ω, ω′⟩π̂ =

M∑
i=1

ωiω
′
iπ̂i, ω, ω′ ∈ RM . (1.14)

Then, for a function g in (1.10) with coefficients ω ∈ RM , the claims in Lemma 2
can be written as

⟨g,1⟩π =

M∑
i=1

ωiπ̂i = ⟨ω,1M ⟩π̂

Eπg
2 =

M∑
i=1

ω2
i π̂i = ⟨ω, ω⟩π̂

EX0∼π

[
g(Xτ )g(X0)

]
=

M∑
i,j=1

ωiωjEX0∼π

[
1Di(X0)1Dj (Xτ )

]
= ⟨P̂ω, ω⟩π̂ .

where 1M denotes the vector in RM with all components 1. Therefore, by
solving (1.8) with functions of the form (1.10), we end up with the optimization
problem

max
ω∈RM ,⟨ω,1M ⟩π̂=0

⟨P̂ω, ω⟩π̂
⟨ω, ω⟩π̂

. (1.15)

associated to the Markov chain defined by P̂ .
Recall that, as a probability matrix, the largest eigenvalue of P̂ is ν̂ = 1

with the corresponding right eivenvector 1M . Denote by ν̂2 the second largest
eigenvalue of P̂ . The following result states the connection among the solution
to (1.15), the eigenvalue ν̂2 associated to the Markov chain, and the eigenvalue
ν2 of the operator Tτ associated to Xt.

Proposition 1. We have

ν2 ≥ max
ω∈RM ,⟨ω,1M ⟩π̂=0

⟨P̂ω, ω⟩π̂
⟨ω, ω⟩π̂

= ν̂2. (1.16)

Proof. The first equality follows from the fact that the maximization prob-
lem in (1.15) is equivalent to (1.8) for functions of the form (1.10) (i.e. we
are solving (1.8) in a subspace). The second equality follows from the
variational principle for the second largest eigenvalue of P̂ .

In practice, we need to evaluate π̂ and P̂ . To this end, notice that ergodic
theorem implies, with probability one,

π̂i =

∫
Rd

1Di
(x)π(x)dx = lim

T→∞

1

T

∫ T

0

1Di
(Xt)dt

P̂ij =
EX0∼π

[
1Di

(X0)1Dj
(Xτ )

]
Ex∼π

[
1Di

(x)
] =

lim
T→∞

1
T

∫ T

0
1Di

(Xt)1Dj
(Xt+τ )dt

lim
T→∞

1
T

∫ T

0
1Di(Xt)dt

,

(1.17)

which can be approximated using long trajectory of the process Xt.
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1.3 Generalization
When the dimension is high, constructing a decomposition of the state space,
as we did in the previous section, may become infeasible. Also, we may want
to solve (1.8) with functions that are more sophisticated than the piece-wise
functions, e.g. with functions represented by artificial neural networks. For
these reasons, in the following we develop an alternative algorithmic approach
for solving (1.8).

We can impose the constraint in (1.8) by adding a penalty term, which
results in uncontrained problem:

min
g∈Φ

[
− ⟨Tτg, g⟩π

⟨g, g⟩π
+ α

(
Eπg

)2] (1.18)

where Φ is a parametrized space of functions, and α > 0 is a relative large
constant. Notice that we have transformed the maximization problem (1.8) to
a minimization problem by including a minus sign in front of the objective.

By ergodic theorem, we have the approximations

⟨Tτg, g⟩π = EX0∼π

[
g1(Xτ )g2(X0)

]
≈ 1

N

N−1∑
n=0

g(Xn)g(Xn+n′) ,

⟨g, g⟩π =

∫
Rd

g2(x)π(x)dx ≈ 1

N

N−1∑
n=0

g2(Xn) ,

⟨g,1⟩π =

∫
Rd

g(x)π(x)dx ≈ 1

N

N−1∑
n=0

g(Xn) ,

(1.19)

where (Xn)0≤n<N are states along the trajectory of Xt sampled at the time
tn = nh, h is the step-size, and we assume that τ = n′h for some integer n′.

Substituting the above approximations into (1.18), we obtain the objective
function:

Loss(g) = min
g∈Φ

[
−

1
N

∑N−1
n=0 g(Xn)g(Xn+n′)
1
N

∑N−1
n=0 g2(Xn)

+ α
( 1

N

N−1∑
n=0

g(Xn)
)2

]
. (1.20)

The above approach can also be applied to solve the smallest nonzero eigen-
value of generators. Consider the Brownian dynamics Xt in Rd

dXt = −∇V (Xt) dt+
√

2β−1dBt , t > 0 (1.21)

whose the generator is

Lg = −∇V · ∇g +
1

β
∆g . (1.22)

Recall that the smallest nonzero eigenvalue of L satisfies the variational principle

λ2 = min
g∈L2

π(Rd),⟨g,1⟩π=0

1
βEπ|∇g|2

⟨g, g⟩π
. (1.23)

The corresponding loss objective is

Loss(g) = min
g∈Φ

[ 1
N

∑N−1
n=0 |∇g(Xn)|2

1
N

∑N−1
n=0 g2(Xn)

+ α
( 1

N

N−1∑
n=0

g(Xn)
)2

]
. (1.24)
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