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1.1 Forward processes
Consider the SDE in Rd

dXt =f(Xt, t) dt+ σ(t)dBt , t ∈ [0, T ] ,

X0 ∼p0 ,
(1.1)

where T > 0, f : Rd× [0, T ] → Rd and σ : [0, T ] → R+ are C1-smooth functions.
Note that for simplicity we assume that σ does not depend on the state Xt.

The probability density function of Xt, denoted by p(x, t), satisfies the
Fokker-Planck equation

∂p

∂t
= L⊤

t p , t ∈ [0, T ] ,

p(x, 0) = p0(x) ,
(1.2)

where Lt denotes the generator of (1.1) at time t, which is defined as

(Ltg)(x) = f(x, t) · ∇g(x) +
σ2(t)

2
∆g(x) , g : Rd → R , (1.3)

and L⊤
t is the adjoint operator of Lt, whose explicit expression can be computed

as

(L⊤
t g)(x) = −div(f(x, t)g(x)) +

σ2(t)

2
∆g(x) , g : Rd → R . (1.4)

Given x0 ∈ Rd, we denote by p(x, t|x0) the probability density of the process
(1.1) starting from the fixed state X0 = x0. Then, p(x, t|x0) satisfies the Fokker-
Planck equation with the initial condition p(x, 0|x0) = δ(x−x0). For the process
(1.1) starting from a general initial density p0, we have

p(x, t) =

∫
Rd

p(x, t|x0)p0(x0)dx0 . (1.5)

Below we study an example where p(x, t|x0) has an explicit expression.

Example (Linear SDEs). Consider the process

dXt = −α(t)Xtdt+
√

β(t)dBt , (1.6)

where α(t), β(t) : [0, T ] → R+. Apply Ito’s formula, we can integrate (1.6)
and obtain

Xt = e−
∫ t
0
α(s)dsX0 +

∫ t

0

e−
∫ t
s
α(r)dr

√
β(s)dBs , t ≥ 0 . (1.7)

Assume that X0 = x0 is fixed. Then, Xt is a Gaussian random variable at
any t > 0. The mean and the covariance of Xt can be calculated as

E(Xt) = e−
∫ t
0
α(s)dsx0 ,

E
(
(Xt − x0)(Xt − x0)

⊤
)
= η2(t)1d ,

(1.8)
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where 1d denotes the identity matrix of size d, and

η2(t) =

∫ t

0

e−2
∫ t
s
α(r)drβ(s)ds . (1.9)

Therefore, we have obtained

Xt ∼ N
(
e−

∫ t
0
α(s)dsx0, η

2(t)1d

)
, (1.10)

and we have

p(x, t|x0) =
(
2πη2(t)

)− d
2 e

− 1
2η2(t)

|x−e−
∫ t
0 α(s)dsx0|2 , x ∈ Rd . (1.11)

1.2 Time reversal
Let us define the time-reversal of p:

q(x, t) = p(x, T − t), ∀ x ∈ Rd, t ∈ [0, T ] . (1.12)

The following theorem states that q is the probability density of a (backward)
diffusion process.

Theorem 1. The probability density function q in (1.12) is the probability
density of the process Yt that is governed by the following SDE

dYt =f−(Yt, t) dt+ σ−(t)dBt , t ∈ [0, T ] ,

Y0 ∼p(·, T ) ,
(1.13)

where the coefficients are given by

f−(x, t) =− f(x, T − t) + σ2(T − t)∇ ln p(x, T − t)

σ−(t) =σ(T − t) ,
(1.14)

for t ∈ [0, T ] and x ∈ Rd.

Proof. To show that q is the probability density of Yt, it is sufficient to
verify that it satisfies the Fokker-Planck equation associated to (1.13):

∂q

∂t
= (L̄t)

⊤q , t ∈ [0, T ] ,

q(x, 0) = p(x, T ) .
(1.15)

where L̄t denotes the generator of (1.13) at time t. Similarly as in (1.4),
we have

(L̄t)
⊤g(x) = −div

(
f−(x, t)g(x)

)
+

(σ−)2(t)

2
∆g(x) . (1.16)

Clearly, (1.12) implies that the initial condition in (1.15) is satisfied. Using
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(1.12) and the fact that p satisfies (1.2), we can derive

∂q

∂t
(x, t) =− ∂p

∂t
(x, T − t)

=− L⊤
T−tp(x, T − t)

=−
[
− div

(
f(x, T − t)p(x, T − t)

)
+

σ2(T − t)

2
∆p(x, T − t)

]
=div

(
f(x, T − t)p(x, T − t)

)
− σ2(T − t)

2
∆p(x, T − t)

=div
(
f(x, T − t)p(x, T − t)− σ2(T − t)∇p(x, T − t)

)
+

σ2(T − t)

2
∆p(x, T − t)

=− div
[(

− f(x, T − t) + σ2(T − t)∇ ln p(x, T − t)
)
p(x, T − t)

]
+

σ2(T − t)

2
∆p(x, T − t)

=− div
(
f−(x, t)q(x, t)

)
+

(σ−)2(t)

2
∆q(x, t)

=(L̄t)
⊤q(x, t) ,

where we have used (1.14). Therefore, q satisfies the Fokker-Planck equa-
tion (1.15).

1.3 Loss function
Assume that a dataset is given where the data is sampled from a target density
ptarget. Our goal is to learn a model that allows to generate new samples from
ptarget.

Choose the initial distribution p0 = ptarget in (1.1). Then, the forward pro-
cess (1.1) transforms the target distribution to the density p(x, T ). Theorem 1
tells us that the probability densities of the backward process Yt at time t = 0
and t = T are

q(x, 0) = p(x, T ), and q(x, T ) = p(x, 0) = ptarget, (1.17)

respectively. Therefore, we can sample the target density ptarget by simulating
the backward process (1.13), provided that we can easily generate samples Y0 ∼
p(x, T ) and compute ∇ ln p, which is called the score function and is involved
in the drift f− of the SDE (1.13).

In theory, we can compute the score by solving the optimization problem

min
u:Rd×[0,T ]→Rd

Et∼U([0,T ])Ex∼p(·,t)

[1
2

∣∣u(x, t)−∇ ln p(x, t)
∣∣2w(t)]

= min
u:Rd×[0,T ]→Rd

[
1

T

∫ T

0

(∫
Rd

1

2

∣∣u(x, t)−∇ ln p(x, t)
∣∣2p(x, t)dx)w(t)dt] ,

(1.18)
where w(t) : [0, T ] → R+ is a weight function, because the score is obviously
the minimizer of (1.18). However, (1.18) is not useful in practice because the
density p(x, t) is unknown.
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Notice that the density p(x, t) can be written as the integral involving
p(x, t|x0) in (1.5) and p(x, t|x0) has an explicit expression when the forward
process is linear (see (1.6) and (1.11)). Therefore, the idea is to rewrite (1.18)
using (1.5) and derive an objective involving p(x, t|x0) instead of p(x, t).

First, we write the objective in (1.18) as

1

2

∫ T

0

[ ∫
Rd

|u(x, t)−∇ ln p(x, t)|2p(x, t)dx
]
w(t)dt

=
1

2

∫ T

0

[ ∫
Rd

∣∣∣u(x, t)− ∇p(x, t)

p(x, t)

∣∣∣2p(x, t)dx]w(t)dt
=

∫ T

0

[ ∫
Rd

(1
2
|u(x, t)|2p(x, t)− u(x, t) · ∇p(x, t) +

1

2

|∇p(x, t)|2

p(x, t)

)
dx

]
w(t) dt

=

∫ T

0

[ ∫
Rd

(1
2
|u(x, t)|2p(x, t)− u(x, t) · ∇p(x, t)

)
dx

]
w(t)dt+ C1 ,

(1.19)
where C1 is a constant independent of u.

Substituting (1.5) into (1.19), we derive∫ T

0

[ ∫
Rd

(1
2
|u(x, t)|2p(x, t)− u(x, t) · ∇p(x, t)

)
dx

]
w(t)dt

=

∫ T

0

{∫
Rd

[1
2
|u(x, t)|2

∫
Rd

p(x, t|x0)p0(x0)dx0

− u(x, t) ·
(∫

Rd

∇p(x, t|x0)p0(x0)dx0

)]
dx

}
w(t)dt

=

∫ T

0

[ ∫
Rd

∫
Rd

(1
2
|u(x, t)|2p(x, t|x0)− u(x, t) · ∇p(x, t|x0)

)
p0(x0)dx0dx

]
w(t)dt

=

∫ T

0

[ ∫
Rd

∫
Rd

(1
2
|u(x, t)|2 − u(x, t) · ∇ ln p(x, t|x0)

)
p(x, t|x0)p0(x0)dx0dx

]
w(t)dt

=

∫ T

0

[ ∫
Rd

∫
Rd

1

2

∣∣u(x, t)−∇ ln p(x, t|x0)
∣∣2p(x, t|x0)p0(x0)dx0dx

]
w(t)dt+ C2

=TEt∼U([0,T ])Ex0∼p0
Ex∼p(·,t|x0)

[1
2

∣∣u(x, t)−∇ ln p(x, t|x0)
∣∣2w(t)]+ C2

=TEt∼U([0,T ])Ex0∼p0
Ex∼p(·,t|x0)

[(1
2
|u(x, t)|2 − u(x, t) · ∇ ln p(x, t|x0)

)
w(t)

]
+ C3,

(1.20)
where C2, C3 are constants independent of u.

To summarize, we have obtained the following result.
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Proposition 1. For u : Rd × [0, T ] → Rd, we have

Et∼U([0,T ])Ex∼p(·,t)

[1
2

∣∣u(x, t)−∇ ln p(x, t)
∣∣2w(t)]

=Et∼U([0,T ])Ex0∼p0
Ex∼p(·,t|x0)

[1
2

∣∣u(x, t)−∇ ln p(x, t|x0)
∣∣2w(t)]+ C2

=Et∼U([0,T ])Ex0∼p0
Ex∼p(·,t|x0)

[(1
2
|u(x, t)|2 − u(x, t) · ∇ ln p(x, t|x0)

)
w(t)

]
+ C3,

(1.21)
where C2, C3 are constants independent of u.
Notice that ∇ ln p(x, t|x0) diverges as t → 0+. Therefore, when designing

loss function in practice, we often modify p(x, t|x0) in Proposition 1 and choose
w(t) properly in order to avoid numerical issue at t = 0. In the following
example, we illustrate this point with a concrete forward process.

Example (VESDE). Consider the linear SDE (1.6), where we choose

α(t) =0 ,

β(t) =
2η2min

T

(ηmax

ηmin

)2t/T

ln
(ηmax

ηmin

)
, t ∈ [0, T ] ,

(1.22)

and 0 < ηmin ≤ ηmax. The SDE becomes

dXt =
√

β(t)dBt , (1.23)

which can be solved directly as

Xt = X0 +

∫ t

0

√
β(s)dBs , (1.24)

and from (1.9) we have

η(t) =
(∫ t

0

β(s)ds
) 1

2

= ηmin

√(ηmax

ηmin

)2t/T

− 1, t ∈ [0, T ] . (1.25)

Assume that X0 ∼ N (x0, η
2
min1d). Equivalently,

X0 = x0 + ηminz, where z ∈ N (0, 1d) . (1.26)

Then

Xt = x0 + ηminz +

∫ t

0

√
β(s)dBs ∼ N (x0, η̃

2(t)1d) (1.27)

where
η̃(t) =

√
η2(t) + η2min = ηmin

(ηmax

ηmin

)t/T

. (1.28)
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The density of Xt is

p̃(x, t|x0) =
(
2πη̃2(t)

)− d
2 e−

1
2 |x−x0|2/η̃2(t) , x ∈ Rd . (1.29)

Replacing p(x, t|x0) by p̃(x, t|x0) and choosing w(t) = η̃2(t) in Propo-
sition 1, we obtain

Loss(u) =Et∼U([0,T ])Ex0∼p0
Ex∼p̃(·,t|x0)

[(1
2
|u(x, t)|2 − u(x, t) · ∇ ln p̃(x, t|x0)

)
w(t)

]
=Et∼U([0,T ])Ex0∼p0

Ex∼p̃(·,t|x0)

[(1
2
|u(x, t)|2 + u(x, t) · x− x0

η̃2(t)

)
η̃2(t)

]
=Et∼U([0,T ])Ex0∼p0

Ez∼N (0,Id)

[(1
2
|u(x, t)|2 + u(x, t) · z

η̃(t)

)
η̃2(t)

]
,

(1.30)
where the last equality follows from the fact that samples x ∼ p̃(·, t|x0) can
be directly obtained as x = x0 + η̃(t)z, where z ∼ N (0, Id).
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