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1.1 Forward processes

Consider the SDE in R?
dXt :f(Xt, t) dt + O'(t)dBt ) te [0, T] 5

(1.1)
XO ~Po

where T' > 0, f : R4 x [0,7] — R? and ¢ : [0, T] — RT are C'-smooth functions.
Note that for simplicity we assume that ¢ does not depend on the state X;.

The probability density function of X;, denoted by p(x,t), satisfies the
Fokker-Planck equation

op T
P _ telo,T
at ‘Ct p, € [07 } ’ (12)
p(x,0) = po(z),
where £; denotes the generator of (1.1) at time ¢, which is defined as
a*(t) d
(Leg)(x) = f(z,t) - Vg(z) + ——=Ag(z), g¢:RT 2R, (1.3)

and £ is the adjoint operator of £;, whose explicit expression can be computed

as
(£ 9)() = ~div(f (. 0() + T dgle), g RIS (1)

Given z¢ € R?, we denote by p(z,t|x¢) the probability density of the process
(1.1) starting from the fixed state Xo = x¢. Then, p(x,t|zo) satisfies the Fokker-
Planck equation with the initial condition p(z, 0|z¢) = d(z—x¢). For the process
(1.1) starting from a general initial density po, we have

p(z,t) = /Rd p(z, tlxo)po(zo)dzg . (1.5)

Below we study an example where p(z, t|xg) has an explicit expression.

Example (Linear SDEs). Consider the process

dXt = —O[(t)Xtdt + B(t)dBt 0 (16)

where a(t), 8(t) : [0,T] — R*. Apply Ito’s formula, we can integrate (1.6)
and obtain

t
X, = e Joods x, +/ e~ Joedr, /B(5)dB,, t>0. (1.7)
0

Assume that Xy = zg is fixed. Then, X; is a Gaussian random variable at
any ¢t > 0. The mean and the covariance of X; can be calculated as

E(X,)=e" Jo a()ds

1.8
E((Xt —20)(X¢ — JTO)T) =7 (t)1a, (18)
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where 1,4 denotes the identity matrix of size d, and

() = /Ot o2 oI B (5)ds (1.9)
Therefore, we have obtained
X, ~ N(e* Jg al)ds g 772(t)1d> : (1.10)
and we have
Pz, tlao) = (2mn2(1)) eI BT Rl L Rd

1.2 Time reversal

Let us define the time-reversal of p:

q(z,t) =p(x, T —t), VrxecRY tcl0,T]. (1.12)
The following theorem states that g is the probability density of a (backward)

diffusion process.

Theorem 1. The probability density function ¢ in (1.12) is the probability
density of the process Y; that is governed by the following SDE

dYy =f~ (Y, t)dt + o~ (t)dB;, t€[0,T],

1.13
Yo ~p(-.T). (149)
where the coefficients are given by
f(z,t) =— f(@, T —t) + o*(T — t)VInp(z, T — t) (1.14)
o~ (t) =o(T —1t), .

for t € [0,7] and = € R9.

Proof. To show that ¢ is the probability density of Y;, it is sufficient to
verify that it satisfies the Fokker-Planck equation associated to (1.13):

0 _
(973 = (Et)—rq, te [OaT] )

q(l’, 0) = p(va) 0

(1.15)

where £; denotes the generator of (1.13) at time ¢. Similarly as in (1.4),
we have

(£)"a@) = ~div(5-@09@) + TLDngw).  (116)

Clearly, (1.12) implies that the initial condition in (1.15) is satisfied. Using
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(1.12) and the fact that p satisfies (1.2), we can derive

9q __op

E(%t) =- @(%T—t)
= _‘C;—tp(zaT_t)
=— [— div(f(:aT —t)p(z, T — t)) + @Ap(:mT — t)}
:div(f(ac, T—t)p(x, T — t)) - @Ap(x7 T—1t)

=div<f(x, T — )p(z, T —t) — (T — t)Vp(z, T — t))
n a3 (T —t)

5 Ap(z, T —t)
=— diVK — f(&, T —t) + o*(T — t)VInp(z, T — t))p(x,T - t)}
+ @Ap(z,T —t)

——aiv(f @@ 0) + T a0
:(Zt)TQ(x’t),

where we have used (1.14). Therefore, g satisfies the Fokker-Planck equa-
tion (1.15). O

1.3 Loss function

Assume that a dataset is given where the data is sampled from a target density
Dtarget- Our goal is to learn a model that allows to generate new samples from
DPtarget -

Choose the initial distribution py = prarget in (1.1). Then, the forward pro-
cess (1.1) transforms the target distribution to the density p(z,T"). Theorem 1
tells us that the probability densities of the backward process Y; at time t = 0
and t =T are

q(x70) = p(I,T), and Q(‘TaT) = p(SC,O) :ptarge‘w (117)

respectively. Therefore, we can sample the target density prarget by simulating
the backward process (1.13), provided that we can easily generate samples Yy ~
p(z,T) and compute VInp, which is called the score function and is involved
in the drift f~ of the SDE (1.13).

In theory, we can compute the score by solving the optimization problem

1 2
i E,. B, [f ) — Vinp(e,t t}
U:RdXH[%I,ITl]ARd t~U ([0,T]) Bz rop(-,t) 2|U($ ) np(z )} w(t)

: e 1 2
7u:]Rd><r[I(l)1,¥]—>]Rd [T/o </]Rd §|u(ac,t) — Vinp(z,t)| p(m,t)dx)w(t)dt] ,
(1.18)
where w(t) : [0,7] — RT is a weight function, because the score is obviously
the minimizer of (1.18). However, (1.18) is not useful in practice because the
density p(z,t) is unknown.



Lecture 6: Score-based diffusion models

Notice that the density p(x,t) can be written as the integral involving
p(z,t|zo) in (1.5) and p(z,t|zo) has an explicit expression when the forward
process is linear (see (1.6) and (1.11)). Therefore, the idea is to rewrite (1.18)
using (1.5) and derive an objective involving p(z,t|z¢) instead of p(x,t).

First, we write the objective in (1.18) as

%/ [ g lu(z,t) — Vlnp(x,t)|2p(x,t)dx]w(t)dt
1

2/ [/R vpjzgf;? ‘Qp(m)dm} w(t)dt
:/ / —lu(z, t)|*p(, t) — u(z,t) - Vp(z, )+;|V;7((xt))|

:/0 [/R( [u(, DPp(w, t) — u(a, 1) - Vp(a, ) ) de] w(t)dt + C1

u(z, t) —

) dx} w(t) dt

(1.19)
where C1 is a constant independent of w.

Substituting (1.5) into (1.19), we derive
r 1

/ [/ (5 a0 Pp(, 1) = ulw,t) - Vp(e,t) ) de| witydt
0 LJra\2

:/OT{/Rd [%|u(x,t)|2 /Rd p(z, t|zo)po(zo)dzo

—u(z,t) - ( » Vp(x,t|xo)po(xo)dxo>}dx} w(t)dt
:/T / / u(z, t)*p(a, tlao) — u(,t) - Vp(x,t|x0))p0(:co)dx0dx} w(t)dt
0 R4 ]Rd
T
:/ / / *\u(x,t)IQ —u(w,t) - Vlnp(%t‘lio))p(x,t\l‘o)po(zo)dxod:z:} w(t)dt
0 Rd JRA

T
:/ / / — Vinp(z, t|zo) | p(x t\xo)po(aco)dxodx} w(t)dt + Cs
0 LJraJra 2
1 2
:TEtNU([O,T])EmowpoEa:Np(~,t|x0) [§|u(x7t) - Vlnp(x, t|.’£0)| w(t)} + o

:T]EtNU([O,T])EmQNpoEpr(~,t|xo) [(%|u($v t)|2 - u(m, t) : VInp(xa t|m0))w(t)] + CS;
(1.20)
where C2,C3 are constants independent of u.
To summarize, we have obtained the following result.
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Proposition 1. For u : R? x [0,7] — R%, we have

1 2
Evts(0.1)Bamp() | 5 [0(@,8) = VInp(a,6)Pw(®)|
1 2
=E;~ v (0,17 Ezo~poEzrp(- t|z0) [du(x, t) — Vinp(z, t|x0)‘ w(t)} + Oy

1
=E¢v (0,17 Ezo~po Bonp(- t|z0) [(§|u(a:, t)|2 —u(z,t) - Vinp(z, t|m0))w(t)} + C3,
(1.21)

where Cs, C'3 are constants independent of u.

Notice that VInp(z,t|zg) diverges as t — 0. Therefore, when designing
loss function in practice, we often modify p(x,t|xo) in Proposition 1 and choose
w(t) properly in order to avoid numerical issue at ¢ = 0. In the following
example, we illustrate this point with a concrete forward process.

Example (VESDE). Consider the linear SDE (1.6), where we choose
a(t) =0,

M2 Do \ 2/ T Tmax (1.22)
ity =i e Y17 () g gy,
( ) T TImin Tlmin [ ]

and 0 < Nmin < NYmax- Lhe SDE becomes

dX, = \/B(t)dB,, (1.23)
which can be solved directly as
t
X =Xo+ [ VBG)B. (1.24)
0

and from (1.9) we have

n(t) = (/Otﬂ(s)ds)é — Tunin ("‘“"‘")M ~1, te0,T]. (125

TImin

Assume that Xo ~ N (2o, n2;,14). Equivalently,

Xo = %o + Nminz, where z € N(0,14). (1.26)
Then
¢
X, = 30+ tinz + | /BE)AB. ~ Nan, (010 (L.27)
0
where

- t/T
7(t) = v/ (t) + Nl =nmin(n—a) .

min

(1.28)
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The density of X; is

4
2

Bla, tlzo) = (2ri2(t)) " e 2lemmol /A0 5 e R (1.29)

Replacing p(x,t|zg) by p(x,t|zo) and choosing w(t) = 7%(t) in Propo-
sition 1, we obtain

1 .
Loss(u) =Enu(0,7) Bagmpo B a0 | (514(@ DI = u(z,1) - VIn (e, tleo) Juw(t)|

1 T — X\ .
=E:~v (0,7 Ezor~po Eens(- o) [(|u($’ )| + u(z, t) - ~2)772(t)}
2 (t)
1 u(x,t) -2\ .
=E:~v 0,17 Ezo~poEzan(0,14) {(2|U($7 )+ H)nﬂ(t)} ;

7(t)

(1.30)

where the last equality follows from the fact that samples « ~ p(-, t|zg) can
be directly obtained as @ = x¢ + 7j(t)z, where z ~ N(0,1;).



