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1.1 Dirac delta function

Definition 1. We define the Dirac delta function δ(x) such that∫
Rd

δ(x)f(x)dx = f(0) (1.1)

for any bounded continuous function f : Rd → R.

The following lemma, which follows directly from the definition above, sum-
marizes basic properties of δ function.

Lemma 1. The following two identities hold.

1. For any x0 ∈ Rd, we have∫
Rd

δ(x− x0)f(x)dx = f(x0) . (1.2)

2.
∫
Rd δ(x)dx = 1.

Proof. Applying a simple change of variables x → x + x0 and using (1.1)
we obtain ∫

Rd

δ(x− x0)f(x)dx =

∫
Rd

δ(x)f(x+ x0)dx = f(x0) .

Choosing f ≡ 1 in (1.1), we get the second identity.

Remark. 1. Lemma 1 suggests that δ(x − x0)dx can be viewed as the
probability distribution where the probability is one at the single
point x = x0 and the probability is zero elsewhere.

2. Intuitively, delta function can be thought as the limit of Gaussian
density

ψσ(x) = (2πσ2)−
d
2 e−

|x|2

2σ2 , x ∈ Rd (1.3)

as σ → 0+. In fact, we can prove that, for a bounded smooth function
f : Rd → R,

lim
σ→0+

∫
Rd

f(x)ψσ(x)dx = f(0) =

∫
Rd

δ(x)f(x)dx . (1.4)

Consider a C1-smooth map ξ : Rd → Rk, where 1 ≤ k < d. We will often
encounter the integral ∫

Rd

f(x)δ(z − ξ(x))dx , (1.5)

where z ∈ Rk. The integral (1.5) can be rigorously defined as the limit of
integrations with respect to Gaussian densities (see (1.4)). A useful identity
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related to (1.5) is given in the following lemma.

Lemma 2. For two test functions f : Rd → R and g : Rk → R, we have∫
Rd

f(x)g(ξ(x))dx =

∫
Rk

(∫
Rd

f(x)δ(z − ξ(x))dx
)
g(z)dz . (1.6)

Proof. Exchanging the order of two integrals and using the first identity
(1.2) in Lemma 1, we can derive∫

Rk

(∫
Rd

f(x)δ(z − ξ(x))dx
)
g(z)dz

=

∫
Rd

f(x)
(∫

Rk

g(z)δ(z − ξ(x))dz
)
dx

=

∫
Rd

f(x)g(ξ(x))dx .

From Lemma 2, it is not difficult to verify that, for any fixed z ∈ Rk,∫
Rd

g(ξ(x))f(x)δ(z − ξ(x))dx = g(z)

∫
Rd

f(x)δ(z − ξ(x))dx . (1.7)

Example (Linear map ξ). Let x = (y, z) ∈ Rd, where y ∈ Rd−k and z ∈
Rk denote the first d − k components and the last k components of x,
respectively. Consider the linear map

ξ(x) = ξ(y, z) = z , ∀x = (x, y) ∈ Rd . (1.8)

Then, the integral (1.5) can be expressed as∫
Rd

f(x′)δ(z − ξ(x′))dx′

=

∫
Rk

∫
Rd−k

f(y′, z′)δ(z − z′)dy′dz′

=

∫
Rd−k

(∫
Rk

f(y′, z′)δ(z − z′)dz′
)
dy′

=

∫
Rd

f(y′, z)dy′ ,

(1.9)

where we have exchanged the order of integrals and used the identity (1.2)
of Lemma 1.

To summarize, in the linear case, the integral (1.5) is simply the inte-
gration of f(y, z) with respect to its first variable y.
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1.2 Conditional expectation
Let X be a random variable in Rd whose probability density is p(x). The
following result provides the probability density of Z = ξ(X), which is a random
variable taking values in Rk.

Lemma 3. The probability density of Z = ξ(X) is given by

Q(z) =

∫
Rd

p(x)δ(z − ξ(x))dx , z ∈ Rk . (1.10)

Proof. Let g : Rk → R be a test function. Using the fact that the proba-
bility density of X is p and Z = ξ(X), let us derive∫

Rk

g(z)Q(z)dz

=EZ∼Q(g(Z))

=EX∼p

(
g(ξ(X))

)
=

∫
Rd

g(ξ(x))p(x)dx

=

∫
Rk

g(z)
(∫

Rd

p(x)δ(z − ξ(x))dx
)
dz ,

(1.11)

where we have used Lemma 2 to derive the last equality. Since the deriva-
tion (1.11) above is true for a general test function g, we conclude that the
density of Z = ξ(X) is given by (1.10).

Choosing g ≡ 1 in (1.11), we have that∫
Rk

Q(z)dz =

∫
Rd

p(x)dx = 1 . (1.12)

Therefore, Q is indeed a probability density. Informally, the expression (1.10)
states that the density of Z = ξ(X) at z is the “sum” of the density p(x) for
all x ∈ Rd such that ξ(x) = z. In literature, Q is often termed as “marginal
density”.

Now, we introduce conditional expectation.

Definition 2. Let X be a random variable in Rd whose probability density
is p. Let z ∈ Rk and f : Rd → R, we define the expectation of f(X)
conditioned on the event that ξ(X) = z as

E
(
f(X)

∣∣ξ(X) = z
)
=

∫
Rd f(x)δ(ξ(x)− z)p(x)dx

Q(z)
, (1.13)

where Q(z) is defined in (1.10).
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Example. As in the previous example, consider again the linear map in
(1.8). Using a similar argument as in (1.9), we can derive∫

Rd

f(x)δ(ξ(x)− z)p(x)dx =

∫
Rd−k

f(y, z)p(y, z)dy

Q(z) =

∫
Rd−k

p(y, z)dy .

(1.14)

Therefore, in this case, the conditional expectation can be expressed as

E
(
f(X)

∣∣ξ(X) = z
)
=

∫
Rd−k f(y, z)p(y, z)dy∫

Rd−k p(y, z)dy
. (1.15)

In the following result, we state a useful identity related to the conditional
expectation.

Proposition 1 (Law of total expectation). For a test function f : Rd → R,
we have

E(f(X)) = Ez∼Q

(
E
(
f(X)

∣∣ξ(X) = z
))
. (1.16)

Proof. Using (1.13), we can compute the right hand side of (1.16) as

Ez∼Q

(
E
(
f(X)

∣∣ξ(X) = z
))

=

∫
Rk

(
E
(
f(X)

∣∣ξ(X) = z
))
Q(z)dz

=

∫
Rk

(∫
Rd f(x)δ(ξ(x)− z)p(x)dx

Q(z)

)
Q(z)dz

=

∫
Rk

∫
Rd

f(x)δ(ξ(x)− z)p(x)dxdz

=

∫
Rd

f(x)p(x)
(∫

Rk

δ(ξ(x)− z)dz
)
dx

=

∫
Rd

f(x)p(x)dx

=E(f(X)) .

(1.17)

Proposition 1 states that the (full) expectation of f(X) can be computed in two
separate steps, namely, by first taking expectation conditioning on ξ(X) = z,
and then taking expectation with respect to the density Q(z).

We conclude this section with a characterization of conditional expectation.

Proposition 2. Given a function f : Rd → R, define

f̃(z) = E
(
f(X)

∣∣ξ(X) = z
)
, z ∈ Rk. (1.18)
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Then, for any g : Rk → R, we have

E
(∣∣f(X)− f̃(ξ(X))

∣∣2) ≤ E
(
|f(X)− g(ξ(X))|2

)
. (1.19)

Proof. Let us compute the right hand side of (1.19). Using Proposition 1,
we have

E
(∣∣f(X)− g(ξ(X))

∣∣2)
=E(f2(X)) + E

(
− 2f(X)g(ξ(X)) + g2(ξ(X))

)
=E(f2(X)) + Ez∼Q

[
E
(
− 2f(X)g(ξ(X)) + g2(ξ(X))

∣∣∣ξ(X) = z
)]

=E(f2(X)) + Ez∼Q

(
− 2g(z)E

(
f(X)

∣∣ξ(X) = z
)
+ g2(z)

)
=E(f2(X)) + Ez∼Q

[∣∣∣g(z)− E
(
f(X)

∣∣ξ(X) = z
)∣∣∣2 − (

E
(
f(X)

∣∣ξ(X) = z
))2

]
=E(f2(X))− Ez∼Q

(
f̃2(z)

)
+ Ez∼Q

(∣∣g(z)− f̃(z)
∣∣2) .

(1.20)
Since the above derivation holds for a general test function g, taking g = f̃ ,
we see that the left hand side of (1.19) can be written as

E
(∣∣f(X)− f̃(ξ(X))

∣∣2) = E(f2(X))− Ez∼Q

(
f̃2(z)

)
. (1.21)

Substituting (1.21) into (1.20), we obtain, for a general test function g,

E
(∣∣f(X)− g(ξ(X))

∣∣2) = E
(∣∣f(X)− f̃(ξ(X))

∣∣2)+Ez∼Q

(∣∣g(z)− f̃(z)
∣∣2) ,

which implies (1.19).

Proposition 2 states that the conditional expectation (1.18) minimizes the mean
square error from f(x) among all functions of the form g(ξ(x)).

1.3 Flow-based generative models
Assume that a dataset is given, which is sampled from a target density p1 =
ptarget on Rd. Also assume that a prior density p0 on Rd, typically a Gaussian
density, is chosen, such that one can directly generate samples according to p0.

For t ∈ [0, 1], we define p(·, t) as the probability density of the random
variable

Xt = (1− t)X0 + tX1 , where X0 ∼ p0, X1 ∼ p1 . (1.22)
Because Xt = X0 at t = 0 and Xt = X1 at t = 1, we clearly have

p(·, 0) = p0 , p(·, 1) = p1 . (1.23)

Our goal is to learn a vector field u : Rd × [0, 1] → Rd such that, starting
from a random initial state Y0 ∼ p0, the transition density of the ODE

dYt
dt

= u(Yt, t) , t ∈ [0, 1] (1.24)
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at time t coincides with p(·, t) for any t ∈ [0, 1]. In particular, by construction
we have Y1 ∼ p(·, 1) = p1. Therefore, if we are able to learn the vector field u,
we can sample the initial state Y0 according to the prior p0 and then simulate
(1.24) to get samples Y1 that are distributed according to the target density.

To achieve this goal, let us first recall that the probability density of Yt under
the ODE (1.24), denoted by q(·, t), satisfies the following continuity equation

∂q

∂t
+ div(uq) = 0 . (1.25)

The following result provides the equation that is satisfied by the density
p(·, t).

Proposition 3. The probability density p(x, t) of Xt in (1.22) solves the
equation

∂p(x, t)

∂t
+ div

(
E
(
X1 −X0

∣∣Xt = x
)
p(x, t)

)
= 0 (1.26)

in a weak sense.

Proof. Let f ∈ Rd× [0, 1] → R be a C1-smooth test function with compact
support and

f(·, 0) = f(·, 1) = 0 . (1.27)

Integrating by parts and using (1.27), we have∫ 1

0

∫
Rd

f(x, t)
∂p(x, t)

∂t
dxdt = −

∫ 1

0

∫
Rd

∂f(x, t)

∂t
p(x, t)dxdt . (1.28)

For the right hand side of (1.28), we can derive

−
∫ 1

0

∫
Rd

∂f(x, t)

∂t
p(x, t)dxdt

=−
∫ 1

0

E
(∂f
∂t

(Xt, t)
)
dt

=−
∫ 1

0

E
(df
dt

(Xt, t)−∇f(Xt, t) ·
dXt

dt

)
dt ,

(1.29)

where the last equality follows from the chain rule. Using (1.22) and (1.27),
we can continue to derive

−
∫ 1

0

∫
Rd

∂f(x, t)

∂t
p(x, t)dxdt

=−
∫ 1

0

E
(df
dt

(Xt, t)−∇f(Xt, t) ·
dXt

dt

)
dt

=− E
(
f(X1, 1)− f(X0, 0)

)
+

∫ 1

0

E
(
∇f(Xt, t) · (X1 −X0)

)
dt

=

∫ 1

0

E
(
∇f(Xt, t) · (X1 −X0)

)
dt .

(1.30)
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To proceed, we use the law of total expectation (see Proposition 1) and
derive

−
∫ 1

0

∫
Rd

∂f(x, t)

∂t
p(x, t)dxdt

=

∫ 1

0

E
(
∇f(Xt, t) · (X1 −X0)

)
dt

=

∫ 1

0

Ex∼p(x,t)

[
E
(
∇f(Xt, t) · (X1 −X0)

∣∣∣Xt = x
)]
dt

=

∫ 1

0

Ex∼p(x,t)

(
∇f(x, t) · E

(
X1 −X0

∣∣Xt = x
))
dt

=

∫ 1

0

∫
Rd

∇f(x, t) · E
(
X1 −X0

∣∣Xt = x
)
p(x, t) dxdt

=−
∫ 1

0

∫
Rd

f(x, t)div
(
E
(
X1 −X0

∣∣Xt = x
)
p(x, t)

)
dxdt ,

(1.31)

where the last equality follows from integration by parts. The equation
(1.26) is obtained after combining (1.28) and (1.31).
Comparing (1.25) and (1.26), we can see that, in order to match the density

q(·, t) of the ODE flow with the density p(·, t), we can choose the vector field u
as the conditional expectation in (1.26). Specifically, we consider the objective∫ 1

0

Ex∼p(x,t)

(∣∣∣u(x, t)− E
(
X1 −X0

∣∣Xt = x
)∣∣∣2)dt

=

∫ 1

0

Ex∼p(x,t)

(
|u(x, t)|2 − 2u(x, t) · E

(
X1 −X0

∣∣Xt = x
))
dt+ C

=

∫ 1

0

Ex∼p(x,t)

[
E
(
|u(Xt, t)|2 − 2u(Xt, t) · (X1 −X0)

∣∣∣Xt = x
)]
dt+ C

=

∫ 1

0

EX0∼p0,X1∼p1

(∣∣∣u((1− t)X0 + tX1, t
)
− (X1 −X0)

∣∣∣2)dt+ C ,

(1.32)

where C is a constant independent of u and we have used Proposition 1 to derive
the last equality. The derivation above implies that we can learn the conditional
expectation in (1.26) using the loss function

Loss(u) = Et∼U [0,1]EX0∼p0,X1∼p1

(∣∣u((1−t)X0+tX1, t
)
−(X1−X0)

∣∣2) . (1.33)

In fact, instead of the linear interpolation in (1.22), we can consider a more
general “interpolant” It : Rd × Rd → Rd, for t ∈ [0, 1], which satisfies

I0(x, y) = x, and I1(x, y) = y, x, y ∈ Rd , (1.34)

and define
Xt = It(X0, X1) , where X0 ∼ p0, X1 ∼ p1 . (1.35)

In this general setting, Proposition 3 can be generalized, using the same
argument, to the following result.
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Proposition 4. The probability density p(x, t) of Xt in (1.35) solves the
equation

∂p(x, t)

∂t
+ div

(
E
(
∂tIt(X0, X1)

∣∣Xt = x
)
p(x, t)

)
= 0 (1.36)

in a weak sense.

Accordingly, the vector field of the ODE flow can be learned with the fol-
lowing objective function

Loss(u) = Et∼U [0,1]EX0∼p0,X1∼p1

(∣∣u(It(X0, X1), t
)
− ∂tIt(X0, X1)

∣∣2) . (1.37)
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