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In the previous lecture, we have studied transition paths of Brownian dynamics
from one local minimum point to another local minimum point in the zero-
temperature (resp. zero-noise) limit. In this lecture, we introduce a framework,
called transition path theory (TPT), for analyzing transition paths of diffusion
processes at finite temperature [3, 1, 2].

1.1 TPT for Brownian dynamics
TPT applies to diffusion processes that are described by SDEs in a general form.
For simplicity, we only present TPT for Brownian dynamics, which satisfies the
SDE

dXt = −∇V (Xt) dt+
√

2β−1dBt, t ≥ 0 , (1.1)

where V : Rd → R is a smooth potential function, Bt is a d-dimensional Brown-
ian motion, and β > 0 is a constant whose inverse is proportional to the system’s
temperature. We assume that the process Xt is ergodic. From previous lectures,
we know that its invariant density is

π(x) =
1

Z
e−βV (x) , where Z =

∫
Rd

e−βV (x)dx , (1.2)

and its infinitesimal generator is

Lf = −∇V · ∇f +
1

β
∆f , (1.3)

for a test function f : Rd → R.
Assume that A,B ⊂ Rd are two disjoint closed subsets with smooth bound-

aries ∂A and ∂B, such that their union has non-empty complement, i.e.

A ∩B = ∅ , and (A ∪B)c = Rd \ (A ∪B) 6= ∅ . (1.4)

We want to study the transition paths of Xt from the set A to the set B.
First of all, let us introduce the hitting times associated to sets A and B,

respectively, as

τA,x = inf
{
t ≥ 0

∣∣Xt ∈ A, starting from X0 = x
}
,

τB,x = inf
{
t ≥ 0

∣∣Xt ∈ B, starting from X0 = x
}
.

(1.5)

Since the process Xt is random, both τA,x and τB,x are random variables. Using
the hitting times in (1.5), we can define the so-called (forward) committor, which
plays a key role in TPT.

Definition 1 (Forward committor). At any state x ∈ Rd, the committor,
denoted by q(x), is the probability that Xt will hit B before it will hit A.
Precisely, it is defined as

q(x) = P (τB,x < τA,x) , x ∈ Rd . (1.6)
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It is well known that the committor solves a boundary value PDE problem, as
is stated in the following result.

Proposition 1. The committor q solves

Lq = 0, on (A ∪B)c

q|∂A = 0, q|∂B = 1 ,
(1.7)

where L is the generator in (1.3).

Proof. We only present an informal proof.
First, notice that by definition it is obvious that the hitting times in

(1.5) satisfy
τA,x = 0 , ∀x ∈ ∂A ,
τB,x = 0 , ∀x ∈ ∂B ,

respectively. As a result, the boundary conditions in (1.7) directly follow
from the definition of the committor in (1.6).

Next, we show that q satisfies the PDE Lq = 0 on (A ∪ B)c. For any
x ∈ (A ∪ B)c, let h > 0 and define t = h ∧ τA,x ∧ τB,x, where a ∧ b :=
min{a, b}. Assuming X0 = x and applying Ito’s lemma, we obtain

q(Xt) = q(x) +

∫ t

0

Lq(Xs)ds+
√

2β−1
∫ t

0

∇q(Xs) · dBs . (1.8)

Taking expectation on both sides, we have

E
(
q(Xt)

∣∣X0 = x
)

= q(x) +

∫ t

0

E
(
Lq(Xs)

∣∣∣X0 = x
)
ds , (1.9)

where the last term in (1.8) vanishes because its mean is zero. To proceed,
notice that the committor defined in (1.6) can be written as

q(x) = E
(
1{τB,x<τA,x}

)
.

Therefore, for the left hand side of (1.9), we can derive

E(q(Xt)
∣∣X0 = x) =E

(
E(1{τB,Xt<τA,Xt})

∣∣∣X0 = x
)

=E
(
1{τB,x<τA,x}

)
=q(x) .

Substituting the above identity into (1.9), we obtain∫ h∧τA,x∧τB,x

0

E
(
Lq(Xs)

∣∣X0 = x
)
ds = 0 .

Since the identity above is true for any h > 0, we conclude that the equation
Lq(x) = 0 must hold.

The next result states that, for Brownian dynamics (1.1), the committor also
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solves an optimization problem.

Proposition 2. For any C1-smooth function f : (A ∪ B)c → R, which
satisfies the boundary conditions

f |∂A = 0, f |∂B = 1 , (1.10)

we have

1

β

∫
(A∪B)c

|∇f(x)|2π(x)dx

=
1

β

∫
(A∪B)c

|∇q(x)|2π(x)dx+
1

β

∫
(A∪B)c

|∇(f − q)(x)|2π(x)dx ,

(1.11)

where π is the invariant density in (1.2). Therefore, the committor q solves
the minimization problem

min
f

( 1

β

∫
(A∪B)c

|∇f(x)|2π(x)dx
)

(1.12)

among all C1-smooth function f : (A ∪ B)c → R with the boundary con-
ditions in (1.10).

Proof. Let us define g = f − q and compute

1

β

∫
(A∪B)c

|∇f(x)|2π(x)dx

=
1

β

∫
(A∪B)c

|∇(q + g)(x)|2π(x)dx

=
1

β

∫
(A∪B)c

|∇q(x)|2π(x)dx+
1

β

∫
(A∪B)c

|∇g(x)|2π(x)dx

+
2

β

∫
(A∪B)c

∇g(x) · ∇q(x)π(x)dx .

Therefore, it is sufficient to prove that the third term on the right hand
side of the last equality above vanishes. To this end, notice that, since
both f and q satisfy the same boundary conditions on ∂A and ∂B, their
difference g = f − q is zero on ∂A∪ ∂B. Applying the divergence theorem
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on (A ∪B)c and using the invariant density in (1.2), we can derive∫
(A∪B)c

∇g(x) · ∇q(x)π(x)dx

=
1

Z

∫
(A∪B)c

∇g(x) · ∇q(x)e−βV (x) dx

=
1

Z

∫
∂A∪∂B

g(x)n(x) · ∇q(x)e−βV (x) dx− 1

Z

∫
(A∪B)c

g(x) div
(
∇q(x)e−βV (x)

)
dx

=
1

Z

∫
∂A∪∂B

g(x)n(x) · ∇q(x)e−βV (x) dx− β

Z

∫
(A∪B)c

g(x)Lq(x) e−βV (x)dx

=0 ,

where n(x) is the normal direction of (A ∪ B)c, the third equality follows
from the identity div

(
∇q(x)e−βV (x)

)
= βe−βV (x)Lq(x), which can be ver-

ified directly using (1.3), and the last equality follows from the fact that g
is zero on ∂A∪∂B and Lq = 0 on (A∪B)c. This shows the identity (1.11).
The second claim that q solves the minimization problem (1.12) is a direct
consequence of (1.11).
Next, we introduce several quantities in TPT. Consider an infinitely long

trajectory (Xt)t∈[0,+∞) of the process (1.1). We define

τ
(1)
A = inf

{
t > 0

∣∣Xt ∈ A
}
, (1.13)

and, for k ≥ 1,
τ
(k)
B = inf

{
t
∣∣ t > τ

(k)
A , Xt ∈ B

}
,

τ
(k+1)
A = inf

{
t
∣∣ t > τ

(k)
B , Xt ∈ A

}
.

(1.14)

In words, τ (k)B is the first time when the process hits B after it hit A at t = τ
(k)
A ,

and τ (k+1)
A is the first time when the process hits A after it hit B at t = τ

(k)
B .

We also define

σ
(k)
A = sup

{
t | τ (k)A < t < τ

(k)
B , Xt ∈ A

}
, k ≥ 1 , (1.15)

which is the last time between [τ
(k)
A , τ

(k)
B ] when the process is in A. These times

satisfy

0 ≤ τ (1)A ≤ σ(1)
A < τ

(1)
B < τ

(2)
A ≤ σ(2)

A < τ
(2)
B < · · · < τ

(k)
A ≤ σ(k)

A < τ
(k)
B ≤ · · · .

(1.16)
A trajectory segment is called a reactive segment if it came from A and then
goes to B without returning to A. Using (1.14) and (1.15), we can see that the
reactive segments correspond to time intervals

[σ
(1)
A , τ

(1)
B ], [σ

(2)
A , τ

(2)
B ], . . . , [σ

(k)
A , τ

(k)
B ], . . . . (1.17)

Alternatively, a time interval [t1, t2] corresponds to a reactive segment, if and
only if

Xt1 ∈ A, Xt2 ∈ B, and Xt ∈ (A ∪B)c, ∀ t1 < t < t2 .
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For any T > 0, let MT be the total number of reactive segments that occur
within time [0, T ]. In other words, MT is the maximal integer k such that
τ
(k)
B ≤ T .

Let us introduce the mean reaction time of the process.

Definition 2 (Mean reaction time). The mean reaction time is defined as
the average length of reactive segments, namely,

tRAB = lim
T→+∞

∑MT

k=1(τ
(k)
B − σ(k)

A )

MT
. (1.18)

Similar to the forward committor in Definition 1, we also need to introduce
the backward committor.

Definition 3 (Backward committor). At any state x ∈ Rd, the backward
committor, denoted by q−(x), is the probability that the process Xt came
from A rather than B. Precisely, it is defined as

q−(x) = P
(
t ∈ [τ

(k)
A , τ

(k)
B ), for some k ≥ 1

∣∣ Xt = x
)
. (1.19)

For any x ∈ (A ∪B)c, we define the reactive density at x, denote by πR(x),
as the density of being at x conditioned on that it belongs to a reactive segment.
Using the forward and backward committors in Definition 1 and Definition 3,
respectively, we can express the reactive density as

πR(x) = Z−1ABπ(x)q−(x)q(x) , (1.20)

where (by ergodicity) the normalizing constant ZAB is the percentage of time
that the process spends on reactive segments, namely,

ZAB =

∫
(A∪B)c

π(x)q−(x)q(x)dx = lim
T→+∞

MT∑
k=1

(τ
(k)
B − σ(k)

A )

T
. (1.21)

Note that the backward committor for the processXt from A to B is actually
the forward committor for the time-reversal of Xt from B to A. For a reversible
process Xt, e.g. the Brownian dynamics (1.1) considered in this lecture, the
statistics of Xt is the same as the statistics of the time-reversal of Xt. In
this case, the backward committor is related to the forward committor by the
following simple relation

q−(x) = 1− q(x), x ∈ Rd ,

and therefore the reactive density in (1.20) becomes

πR(x) = Z−1ABπ(x)(1− q(x))q(x) .

The last quantity we introduce is the transition rate from A to B.
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Definition 4 (Transition rate). The transition rate from A to B is defined
as

kAB = lim
T→+∞

MT

T
, (1.22)

where MT is the total number of reactive segments within time [0, T ].

As a simple property, we have the following lemma.

Lemma 1. kAB = kBA.

Proof. Notice that, along an infinitely long trajectory of Xt, there is ex-
actly one reactive segment from B to A between two consecutive reactive
segments from A to B. The conclusion follows immediately from this ob-
servation and Definition 4.

The following lemma reveals the connection between the transition rate and
the mean reaction time in Definition 2.

Lemma 2.
kAB =

ZAB
tRAB

. (1.23)

Proof. Using (1.18), (1.21), and (1.22), we can derive

kAB = lim
T→+∞

MT

T

= lim
T→+∞

MT∑MT

k=1(τ
(k)
B − σ(k)

A )
× lim
T→+∞

∑MT

k=1(τ
(k)
B − σ(k)

A )

T

=
ZAB
tRAB

.

The results above are true for both reversible and non-reversible processes. In
the reversible case considered in this lecture, we also have the following result,
which connects the transition rate and the committor. For brevity, we omit its
proof and refer to [3] for derivations.

Proposition 3. For the Brownian dynamics in (1.1), we have

kAB =
1

β

∫
(A∪B)c

|∇q(x)|2π(x)dx . (1.24)

Combining Propositions 2–3, we can conclude that the transition rate kAB for
Brownian dynamics is identical to the minimum of the optimization problem in
(1.12).

Remark. Proposition 2 provides a way to numerically compute the com-
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mittor q by solving the optimization problem (1.12) under the boundary
condition in (1.10). Specifically, assuming states X1, X2, . . . , XN are sam-
pled from a long trajectory of (1.1), we can represent the committor q by
neural networks and train it with the loss function

Loss(q) =
1

βN

N∑
n=1

|∇q(Xn)|21(A∪B)c(Xn)

+
λ1
N

N∑
n=1

(
|q(Xn)|21A(Xn)

)
+
λ2
N

N∑
n=1

(
|q(Xn)− 1|21B(Xn)

)
.

where the first term is a Monte Carlo estimator of the integral in (1.24),
the two terms in the second line are penalty terms to impose the boundary
condition in (1.10), and λ1, λ2 > 0 are tunable parameters.

Proposition 3 implies that solving the minimization problem (1.12) for
the committor also gives an estimation of the transition rate.

1.2 TPT for Markov chains
TPT can be generalized to Markov chains. Here, we only introduce the commit-
tor for Markov chains. A comprehensive discussion of TPT for Markov chains
is presented in [2].

Consider a Markov chain with finite number of states D = {1, 2, . . . ,m},
whose dynamics is described by a probability transition matrix P ∈ Rm×m,
where Pij is the probability of jumping to the state j when the Markov chain
is currently at the state i, for i, j ∈ D.

Assume that A,B ⊂ D are two disjoint subsets. The committor from set
A to set B is an m-dimensional vector, which can be defined in a similar way
as in Definition 1. The following result is a counterpart of Proposition 1 in the
discrete setting.

Proposition 4. The committor q solves
∑m
j=1 Pijqj = qi, i ∈ (A ∪B)c ,

qi = 0, i ∈ A ,
qi = 1, i ∈ B .

(1.25)

We refer to [2] for the proof of Proposition 4, as well as for the other quanti-
ties in the discrete setting, such as reactive segments, mean reaction time, and
transition rates.
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