Lecture 12: Asymptotic analysis

Lecture 12: Asymptotic analysis

In this lecture, we consider problems that involve a small parameter ¢ > 0. We
study the limiting behavior of such problems as ¢ — 0 using asymptotic analysis
techniques. For a systemetic introduction of asymptotic analysis techniques for
stochastic dynamics, see [1] and [2].

1.1 Invariant manifolds for ODEs

Consider the ordinary equation (ODE)

dx
a5 =T@om),
(1.1)
dye _1 (24, y2)
dt _89 tyYt)

where (z;,7;) € RF x RITF f: RF x RI=F 5 RF g : RF x R™F — RI* and
€ > 0 is a small parameter. Our goal is to study the dynamics (1.1) as ¢ — 0.

Intuitively, when ¢ is small, the dynamics of y; is much faster than the
dynamics of z; because of the factor 1/¢ in the equation of y;. Let ¢! (y) be the
flow map of the ODE

el (y)
dt

=g(z,¢L(y)), Yt>0, and @2(y) =y, (1.2)

where © € R” is a fixed parameter and y € R~ is the initial state. We assume
that, as t — +oo, the dynamics (1.2) converges to a limiting state that only
depends on z, i.e.

lim ¢! (y) =n(z), (1.3)

t—+oo

and the speed of convergence is uniform in z. Roughly speaking, under this
assumption, if we consider time ¢ that is much smaller than 1 so that x; remains
close to xg, the state y; satisfies y; ~ cp;{f(yo) ~ 1(xo), implying that it quickly
reaches equilibrium. If we focus on larger time ¢ that is order O(1), y; will
behave like a “slave variable” of z;, such that y; = n(x;). In the following, we
justify the above heuristics and derive the limiting equation of x;.

Asymptotic expansion. We consider the invariant manifold of (1.1) and
assume that the invariant manifold can be parametrized as the graph y = ®(x),
where ® : R¥ — RY . Since the manifold is invariant under the dynamics
(1.1), the tangent direction of (z,y;) must belong to the tangent space of the
invariant manifold, which implies

dxt

dyt dzy
dt’

(1.4)

where V® : R¥ — R(@=%)xk_ Combining (1.4) and (1.1), we know that & must

satisfy the PDE
Lol B(e) = V() (z, B(z)). (1.5)

We seek solutions to (1.5) as a power series

() = Bo(z) + P () + 2Py (z) + - - - . (1.6)
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Substituting (1.6) into (1.5), applying Taylor’s expansion, and collecting
terms of order e~! and terms of order £, respectively, we obtain the equations
of &y and P; as

g(x, Po()) =

07
Vy0(, @0(2))®: () = V() (x, Bo(x)) ()

Notice that, since n(x) in (1.3) is the limiting state of the ODE flow (1.2), it
satisfies g(z,n(x)) = 0. Therefore, to solve ®¢, we can choose

Po(x) = n(z). (1.8)

For ®1, assuming that V,g(z,n(z)) € RE=F*(@=k) ig invertible, then from (1.7)
we can obtain

1 (2) = (Vyg(w,n(2)) " V() f(z,n(x)) (1.9)
Substituting (1.8)—(1.9) into (1.6), we obtain
®(x) = n(x) + £(Vyg(z,n(@))) " V(@) f(z,0()) + O?). (1.10)

Therefore, for the function f in (1.1), applying Taylor’s expansion, we obtain

@, ®(@)) =f(z,n(2)) +eVy f (@, 0(@)) (Vyg(z,n(2))) " Vi(@)f(@,n(@)) + O()

= (1 + 2V, @, 0(@)) (Vyg(w n(@))) " In() ) £z, 1(2)) + O(?)

(1.11)

Limiting equation. Substituting the leading order of the expansion (1.11)
into the ODE (1.1), we obtain the approximation of (1.1) in the limit € — 0

dX;

T = Fo(Xt) ) (1'12)

where the vector field Fy : R¥ — R¥ is defined as
Fo(z) = f(x,n(x)), =ecRF.
If we keep the term of order ¢ in (1.11), we obtain the refined limiting ODE

dX
7; :Fo(Xt)+EF1(Xt)7 (113)

where the vector field F} : R¥ — R* is defined as

Fi(z) = Vy f (2,9(2)) (Vyg(z,0(2))) " V(@) f(z,n(z), = eRE.

1.2 Averaging for SDEs

Similar to (1.14), we consider the equation

d.’Et

dat :f(xtvyt) )

: . (1.14)
dyy :gg(xtvyt)dt + %a(xtvyt) dw
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where w; is a standard Brownian motion in R4 o : R¥ x R¥~* — R4=F is the
diffusion coefficient, and functions f and g are defined in the same way as in
(1.1). Our goal is again to study the limiting behavior of the process in (1.14)
as e — 0.

Let ¢! (y) be the solution to the fast dynamics in (1.14) with fixed x. Pre-
cisely, for fixed = € RF, ¢ (y) solves

del(y) = g(x, 0L (y))dt + a(z, L (y)) dwy, V¢ >0, and p2(y) =y. (1.15)

As in the previous section, for time ¢ much smaller than 1, the variable y; in
(1.14) is given by y; =~ goi/os(yo). If (1.15) is ergodic, then y; will approach
its (z-dependent) invariant density within time ¢ that is large compared to e.
Therefore, intuitively, we can derive a limiting equation for x; by averaging y
in the equation of z; with respect to the invariant density of (1.15).

The generator of (1.14) can be written as

ﬁzéﬁﬁﬁh (1.16)
where
1 d—k 82
Lo =g(z,y) Vy+5 g::l(‘w;)(x’ y)”’@ ’ (1.17)
Ly =f(z,y)- V.

Fast dynamics. Assume that z is fixed. Note that Lo in (1.17) is the
generator of the dynamics (1.15). We assume that, for any 2 € R¥, the dynamics
(1.15) is ergodic and the unique invariant density is p®(y;z). From previous
lectures, we know that p™(y; z) solves the equation

£dp=(yiw) =0, (118)

where £ is the adjoint of £y or, in integral form,

/RH Lop(y)p™(y;x)dy =0, (1.19)

for a general function ¢ : R?"* — R. From (1.17), it is obvious that Lop = 0 if
 is a constant function of y. We assume that the converse is also true, namely,

Lop(y) =0, Yy = oy)=C. (1.20)

In other words, we assume that ker(Lg) is a one-dimensional space spanned by
the constant function.

Asymptotic expansion. To study the limiting behavior of the process
(1.14), we consider the quantity

v(@,y,t) =B((z) |20 = 2,00 = y) (1.21)
for a function ¢ : R* — R. From previous lectures, we know that v solves the

PDE

(1.22)

%z/jv, t>0,
v =0, t=0.
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We want to seek a solution to (1.22) in the form of the expansion
v =1y +evy +O(?). (1.23)
Substituting (1.23) into (1.22), and using (1.16), we obtain

duo 1
% = ~Lovo + L1vo + Lovi + O(e) (1.24)

Collecting terms of order e~ and order €, respectively, we obtain

£0’UO :0,
v (1.25)
87; =Liv9 + Lovy .

Note that the first equation in (1.25) and the assumption (1.20) imply that
vp is independent of y, i.e.
7)0(55', Y, t) = UO(‘T7 t)

From the initial condition in (1.22), we have vy(x,0) = ¢(x).

To obtain a closed equation for vy, we multiply both sides of the second
equation in (1.25) by the invariant density p°°(y;x) and then integrate with
respect to y, which gives

81} o0 o0 o0
/ ?top (y;x)dy=/ Lyvop (y;x)dy+/ Lov1p™ (y; x)dy .
Rd—k Rd—k Rd—k

Using the fact that vy is independent of y, applying the expression of £; in
(1.17) and the identity in (1.19), we obtain

%(m, t) = F(x) - Vyvo(x,t) (1.26)

for the leading term vg, where
F(z)= / flz,9)p™(y;2)dy, x€ RF. (1.27)
Rd—k

Note that the solution to (1.26) can be solved using the method of charac-
teristic as
vo(z,t) = vo(X¢,0) = &(Xy), t>0,

where X; is the solution to the ODE

ax,

= F(X Xo==x. 1.2
SL=F(X), Xo=u (1.28)

Hence, the expansion v = vy + O(e) becomes

E(¢($t)

To = 2,9 = y) = ¢(Xy) + O(e). (1.29)

The derivation above implies that, as ¢ — 0, the limiting dynamics of z; in
(1.14) is given by (1.28).
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Example. Consider the SDE

dx
ditt :(1 - 2yt2)xt ’

2
dyt:—ytdt+\[dwt,
& &

where 2,y € R. The invariant density for the fast dynamics (y; with fixed
x¢) is the standard Gaussian

(1.30)

y2

pe(y) = (2m)ie™ .

From (1.27), we obtain

Pla)= / (1 - 202)p™ (y)dy )z = .

Therefore, the limiting ODE of (1.30) is

dX,

=t X,
dt t

1.3 Mean first exit time

We consider the one-dimensional Brownian dynamics
dX; = —V'(X,)dt + V2edB;, t>0, (1.31)

where V' : R — R is a potential and € > 0 is a small parameter.

Assume that ‘ llim V(z) — 4o00. Furthermore, z¢ is a local minimal state
xT|—0o0

of V and the basin of attraction of xg is
D = Q(zg) = (—00, x.), (1.32)

where . > ¢ is a saddle point of the potential V. In particular, (1.32) implies
that ¢ is the only local minimal state of V' in (—o0, z.).
For z € R, we define the mean first exit time (MFET) from the set D as

g(x) =E(r), where 7, =inf {t >0 | X, €D, Xy = a:} )
Applying Ito’s formula, we can verify that g solves the PDE

Lg=-1, z€(-0,x.),

(1.33)
g(xC) = Oa
where L is the generator of (1.31), given by
dv d d?
=———+4e—. 1.34
£ dx dx * e (1:34)

Our goal is to study the solution to (1.33) when & — 0.
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Intuitively, starting from the vicinity of the local minimal state xg, the aver-
age time for the system to leave the set D grows exponentially as ¢ — 0. Based
on this observation, we define

g=ctw (1.35)
for some K > 0 (whose value will be determine later) such that w is of order
O(1) as € — 0. Then, it is easy to verify that w solves

_Vdw 5d2—w——e_£ x € (=00, x,)
dz dz de? ’ e (1.36)
w(z.)=0.

In order to study the solution to (1.36), we consider asymptotic expansion of w
for x close to x. (boundary of D) and for x away from z..

Step 1. First, away from x., we consider the expansion
w(z) = wo(x) + ew (z) + O(?) . (1.37)

Substituting (1.37) into (1.36) and collecting the term of order O(1), we

obtain

ddeO
—%%—O, .Te(—OO,.fC),

which implies that wq is constant under the ODE

ax,

o= V). (1.38)

Since D = (—o0, x.) is the basin of attraction associated to zg, any state x €
(—00, x.) converges to xg under the ODE (1.38). Therefore, we conclude that

wo(l') = ’wo(l'o) = CO . (139)

Step 2. Second, near the boundary = = x., we “zoom in” the boundary layer
by considering the change of variables

T =1x,— ez,

Then, we have
dw dwdz 1 dw

dr dzdr e dz’
& _diw(dif_ Ld*w
dx?  dz2 \dx/)  edz?’

Moreover, note that z. is a saddle point implies %(xc) = 0. Therefore, Taylor

expansion gives

(1.40)

V'(z) = V"(x:)(x — 20) + O]z — 20]?) = Verz + O(e), (1.41)

where
k=-V"(z.). (1.42)
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Substituting (1.41) and (1.40) into (1.36), we obtain

d*w dw
w(0) =0.
To analyze the solution to (1.43), let us consider the expansion
w(z) = wo(z) + Vewi(z) + O(e) . (1.44)
Substituting (1.44) into (1.43), we obtain the equation for wy
dQ’LUQ d’LU()
72 (2) + /@'zg(z) =0, ze€(0,+0c0), (1.45)
Note that (1.45) can be solved by direct integration, which gives
wo(z) = Cl/ e*%’fdn, (1.46)
0
where (' is a constant such that
d’wo
Cy = —(0). 14
V=20 0) (1.47

Step 3. Sending z — +oo in (1.46), and using the identity for Gaussian
integral, we obtain

' _ T ot gy — |
ZEIJPOOwO(z) Cl/o e dn=C 5 - (1.48)

On the other hand, as z — +o00, the limit (1.48) should match the leading term
in the previous analysis in (1.39). Therefore, the two constants Cy and C; are

related by
2
Oy = Om/f . (1.49)

Step 4. To compute Cy and C7, we multiply both sides of the differential
1
equation in (1.36) by e~=V(®) and integrate over D, which gives

e dVdw | P e
/ ( _ %ﬁ + gdixqg)e_%v(r)daj = —e_% / e_%v(m)dx. (1.50)

—c0 —oo

For the left hand side of (1.50), we can derive

Te dV dw d?w 1y
- - — € (z)
/_Oo( d dx+5dx2)e dw

=¢ /a; % (%e’iv(m))dz
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where we used the fact that lim %(m)efiv(w) = 0, since we have assumed
Tr—r—00

that EIEI V(z) = 4o00. Combining the above derivation with (1.40), (1.47)
and (1.49), we obtain

e dVdw  dPwy\ _1y

- — e = (i)d

/ (- %@ o) v

— 00

d
=8 ()oY

_ \/g%’(o)e—évm) (1.51)

== VE(C1+ O(VE))e V()
=- ﬁ(co\/? + O(ﬁ))e_%vm) :

For the integral on the right hand side of (1.50), noticing that xg is the unique lo-
cal minimal state of V() in (—o0, x1), applying Laplace’s method (see Lemma 1
below), we obtain

T v C1v(s 2m
/ e V@ dy = \Jee =V 0)( V7 (z0) +0(1))- (1.52)

oo

Substituting (1.51) and (1.52) into (1.50), we obtain

\/E(CO\/?ﬁL (9(\@))67%‘/(“) = 7\/5675675\/(1:0)( VHQ&O) + 0(1)) ;
(1.53)

from which we can solve (recall that xk = —=V"(x.) in (1.42))

il V()|

K = V(ﬂtc) - V(xo)v Co = |V”(Z‘c) V”(l‘o) :

Therefore, from (1.35), (1.37) and (1.39), we conclude that

K Vi(we)=V(zg) ( v [V (z.)|

g(x) = e w(z) =e T\ Ve +0)) .

Lemma 1 (Laplace’s method). Assume that function f : [a,b] — R is C3
and attains its unique minimum at = z € (a,b). Further assume that
f"(x0) > 0. Then, as ¢ — 0, we have

b
f(x) f(zg) 21
— = T T e _ 1 .
/a e dx = /ee ( e, +o( ))

For simplicity, we only present an informal discussion on its proof in the following
remark.
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Remark. By a change of variables x = x¢ 4+ \/2z, we obtain

b—ag

b
/e‘ﬂf’dxzﬁ/ T et VE) gy
a —Zo—2

NG

Notice that z( is a minimal point implies f’(xg) = 0. Therefore, Taylor’s
expansion gives

ESIED

2 3
. 52 TOWE),

éf(xo +Vez) =

and
b

b —Z0
/ eff(em) dZIJ :\/E/ Ve eféf(fb(ﬂ’\ﬁZ)dz
a _zp—a

NG
b—xg
. = s
:ﬁe_f(:m/ Ve oL (20)22+0(\/523)dz
_sg—a
Ve
f(z) 2
=\/ee - ( +o(1 ) )
Py T oW
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