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In this lecture, we consider problems that involve a small parameter ε > 0. We
study the limiting behavior of such problems as ε → 0 using asymptotic analysis
techniques. For a systemetic introduction of asymptotic analysis techniques for
stochastic dynamics, see [1] and [2].

1.1 Invariant manifolds for ODEs
Consider the ordinary equation (ODE)

dxt

dt
=f(xt, yt) ,

dyt
dt

=
1

ε
g(xt, yt) ,

(1.1)

where (xt, yt) ∈ Rk × Rd−k, f : Rk × Rd−k → Rk, g : Rk × Rd−k → Rd−k, and
ε > 0 is a small parameter. Our goal is to study the dynamics (1.1) as ε → 0.

Intuitively, when ε is small, the dynamics of yt is much faster than the
dynamics of xt because of the factor 1/ε in the equation of yt. Let φt

x(y) be the
flow map of the ODE

dφt
x(y)

dt
= g(x, φt

x(y)), ∀ t ≥ 0, and φ0
x(y) = y , (1.2)

where x ∈ Rk is a fixed parameter and y ∈ Rd−k is the initial state. We assume
that, as t → +∞, the dynamics (1.2) converges to a limiting state that only
depends on x, i.e.

lim
t→+∞

φt
x(y) = η(x) , (1.3)

and the speed of convergence is uniform in x. Roughly speaking, under this
assumption, if we consider time t that is much smaller than 1 so that xt remains
close to x0, the state yt satisfies yt ≈ φ

t/ε
x0 (y0) ≈ η(x0), implying that it quickly

reaches equilibrium. If we focus on larger time t that is order O(1), yt will
behave like a “slave variable” of xt, such that yt ≈ η(xt). In the following, we
justify the above heuristics and derive the limiting equation of xt.

Asymptotic expansion. We consider the invariant manifold of (1.1) and
assume that the invariant manifold can be parametrized as the graph y = Φ(x),
where Φ : Rk → Rd−k. Since the manifold is invariant under the dynamics
(1.1), the tangent direction of (xt, yt) must belong to the tangent space of the
invariant manifold, which implies

dyt
dt

= ∇Φ(xt)
dxt

dt
, (1.4)

where ∇Φ : Rk → R(d−k)×k. Combining (1.4) and (1.1), we know that Φ must
satisfy the PDE

1

ε
g(x,Φ(x)) = ∇Φ(x)f(x,Φ(x)) . (1.5)

We seek solutions to (1.5) as a power series

Φ(x) = Φ0(x) + εΦ1(x) + ε2Φ2(x) + · · · . (1.6)

1



Lecture 12: Asymptotic analysis

Substituting (1.6) into (1.5), applying Taylor’s expansion, and collecting
terms of order ε−1 and terms of order ε0, respectively, we obtain the equations
of Φ0 and Φ1 as

g(x,Φ0(x)) = 0 ,

∇yg(x,Φ0(x))Φ1(x) = ∇Φ0(x)f(x,Φ0(x)) .
(1.7)

Notice that, since η(x) in (1.3) is the limiting state of the ODE flow (1.2), it
satisfies g(x, η(x)) = 0. Therefore, to solve Φ0, we can choose

Φ0(x) = η(x) . (1.8)

For Φ1, assuming that ∇yg(x, η(x)) ∈ R(d−k)×(d−k) is invertible, then from (1.7)
we can obtain

Φ1(x) =
(
∇yg(x, η(x))

)−1∇η(x)f(x, η(x)) . (1.9)

Substituting (1.8)–(1.9) into (1.6), we obtain

Φ(x) = η(x) + ε
(
∇yg(x, η(x))

)−1∇η(x)f(x, η(x)) +O(ε2) . (1.10)

Therefore, for the function f in (1.1), applying Taylor’s expansion, we obtain

f(x,Φ(x)) =f(x, η(x)) + ε∇yf(x, η(x))
(
∇yg(x, η(x))

)−1∇η(x)f(x, η(x)) +O(ε2)

=
(
I + ε∇yf(x, η(x))

(
∇yg(x, η(x))

)−1∇η(x)
)
f(x, η(x)) +O(ε2) .

(1.11)
Limiting equation. Substituting the leading order of the expansion (1.11)

into the ODE (1.1), we obtain the approximation of (1.1) in the limit ε → 0

dXt

dt
= F0(Xt) , (1.12)

where the vector field F0 : Rk → Rk is defined as

F0(x) = f(x, η(x)) , x ∈ Rk .

If we keep the term of order ε in (1.11), we obtain the refined limiting ODE

dXt

dt
= F0(Xt) + εF1(Xt) , (1.13)

where the vector field F1 : Rk → Rk is defined as

F1(x) = ∇yf(x, η(x))
(
∇yg(x, η(x))

)−1∇η(x)f(x, η(x)) , x ∈ Rk .

1.2 Averaging for SDEs
Similar to (1.14), we consider the equation

dxt

dt
=f(xt, yt) ,

dyt =
1

ε
g(xt, yt)dt+

1√
ε
α(xt, yt) dwt ,

(1.14)
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where wt is a standard Brownian motion in Rd−k, α : Rk ×Rd−k → Rd−k is the
diffusion coefficient, and functions f and g are defined in the same way as in
(1.1). Our goal is again to study the limiting behavior of the process in (1.14)
as ε → 0.

Let φt
x(y) be the solution to the fast dynamics in (1.14) with fixed x. Pre-

cisely, for fixed x ∈ Rk, φt
x(y) solves

dφt
x(y) = g(x, φt

x(y))dt+ α(x, φt
x(y)) dwt, ∀ t ≥ 0, and φ0

x(y) = y . (1.15)

As in the previous section, for time t much smaller than 1, the variable yt in
(1.14) is given by yt ≈ φ

t/ε
x0 (y0). If (1.15) is ergodic, then yt will approach

its (x-dependent) invariant density within time t that is large compared to ε.
Therefore, intuitively, we can derive a limiting equation for xt by averaging y
in the equation of xt with respect to the invariant density of (1.15).

The generator of (1.14) can be written as

L =
1

ε
L0 + L1 , (1.16)

where

L0 =g(x, y) · ∇y +
1

2

d−k∑
i,j=1

(αα⊤)(x, y)ij
∂2

∂yiyj
,

L1 =f(x, y) · ∇x .

(1.17)

Fast dynamics. Assume that x is fixed. Note that L0 in (1.17) is the
generator of the dynamics (1.15). We assume that, for any x ∈ Rk, the dynamics
(1.15) is ergodic and the unique invariant density is ρ∞(y;x). From previous
lectures, we know that ρ∞(y;x) solves the equation

L⊤
0 ρ

∞(y;x) = 0 , (1.18)

where L⊤
0 is the adjoint of L0 or, in integral form,∫

Rd−k

L0φ(y)ρ
∞(y;x)dy = 0 , (1.19)

for a general function φ : Rd−k → R. From (1.17), it is obvious that L0φ ≡ 0 if
φ is a constant function of y. We assume that the converse is also true, namely,

L0φ(y) = 0, ∀y =⇒ φ(y) ≡ C . (1.20)

In other words, we assume that ker(L0) is a one-dimensional space spanned by
the constant function.

Asymptotic expansion. To study the limiting behavior of the process
(1.14), we consider the quantity

v(x, y, t) = E
(
ϕ(xt)

∣∣∣x0 = x, y0 = y
)

(1.21)

for a function ϕ : Rk → R. From previous lectures, we know that v solves the
PDE {

∂v
∂t = Lv , t > 0 ,

v = ϕ, t = 0 .
(1.22)
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We want to seek a solution to (1.22) in the form of the expansion

v = v0 + εv1 +O(ε2) . (1.23)

Substituting (1.23) into (1.22), and using (1.16), we obtain

∂v0
∂t

=
1

ε
L0v0 + L1v0 + L0v1 +O(ε) . (1.24)

Collecting terms of order ε−1 and order ε0, respectively, we obtain

L0v0 =0 ,

∂v0
∂t

=L1v0 + L0v1 .
(1.25)

Note that the first equation in (1.25) and the assumption (1.20) imply that
v0 is independent of y, i.e.

v0(x, y, t) = v0(x, t).

From the initial condition in (1.22), we have v0(x, 0) = ϕ(x).
To obtain a closed equation for v0, we multiply both sides of the second

equation in (1.25) by the invariant density ρ∞(y;x) and then integrate with
respect to y, which gives∫

Rd−k

∂v0
∂t

ρ∞(y;x)dy =

∫
Rd−k

L1v0ρ
∞(y;x)dy +

∫
Rd−k

L0v1ρ
∞(y;x)dy .

Using the fact that v0 is independent of y, applying the expression of L1 in
(1.17) and the identity in (1.19), we obtain

∂v0
∂t

(x, t) = F (x) · ∇xv0(x, t) (1.26)

for the leading term v0, where

F (x) =

∫
Rd−k

f(x, y)ρ∞(y;x)dy , x ∈ Rk . (1.27)

Note that the solution to (1.26) can be solved using the method of charac-
teristic as

v0(x, t) = v0(Xt, 0) = ϕ(Xt), t > 0,

where Xt is the solution to the ODE

dXt

dt
= F (Xt) , X0 = x . (1.28)

Hence, the expansion v = v0 +O(ε) becomes

E
(
ϕ(xt)

∣∣∣x0 = x, y0 = y
)
= ϕ(Xt) +O(ε) . (1.29)

The derivation above implies that, as ε → 0, the limiting dynamics of xt in
(1.14) is given by (1.28).
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Example. Consider the SDE

dxt

dt
=(1− 2y2t )xt ,

dyt =− yt
ε
dt+

√
2

ε
dwt ,

(1.30)

where xt, yt ∈ R. The invariant density for the fast dynamics (yt with fixed
xt) is the standard Gaussian

ρ∞(y) = (2π)
1
2 e−

y2

2 .

From (1.27), we obtain

F (x) =
(∫

R
(1− 2y2)ρ∞(y)dy

)
x = −x.

Therefore, the limiting ODE of (1.30) is

dXt

dt
= −Xt .

1.3 Mean first exit time
We consider the one-dimensional Brownian dynamics

dXt = −V ′(Xt) dt+
√
2εdBt, t ≥ 0 , (1.31)

where V : R → R is a potential and ε > 0 is a small parameter.
Assume that lim

|x|→∞
V (x) → +∞. Furthermore, x0 is a local minimal state

of V and the basin of attraction of x0 is

D = Ω(x0) = (−∞, xc), (1.32)

where xc > x0 is a saddle point of the potential V . In particular, (1.32) implies
that x0 is the only local minimal state of V in (−∞, xc).

For x ∈ R, we define the mean first exit time (MFET) from the set D as

g(x) = E(τx) , where τx = inf
{
t > 0

∣∣Xt ̸∈ D,X0 = x
}
.

Applying Ito’s formula, we can verify that g solves the PDE

Lg = −1 , x ∈ (−∞, xc) ,

g(xc) = 0 ,
(1.33)

where L is the generator of (1.31), given by

L = −dV

dx

d

dx
+ ε

d2

dx2
. (1.34)

Our goal is to study the solution to (1.33) when ε → 0.
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Intuitively, starting from the vicinity of the local minimal state x0, the aver-
age time for the system to leave the set D grows exponentially as ε → 0. Based
on this observation, we define

g = e
K
ε w (1.35)

for some K > 0 (whose value will be determine later) such that w is of order
O(1) as ε → 0. Then, it is easy to verify that w solves

− dV

dx

dw

dx
+ ε

d2w

dx2
= −e−

K
ε , x ∈ (−∞, xc) ,

w(xc) = 0 .

(1.36)

In order to study the solution to (1.36), we consider asymptotic expansion of w
for x close to xc (boundary of D) and for x away from xc.

Step 1. First, away from xc, we consider the expansion

w(x) = w0(x) + εw1(x) +O(ε2) . (1.37)

Substituting (1.37) into (1.36) and collecting the term of order O(1), we
obtain

−dV

dx

dw0

dx
= 0 , x ∈ (−∞, xc) ,

which implies that w0 is constant under the ODE

dXt

dt
= −V ′(Xt) . (1.38)

Since D = (−∞, xc) is the basin of attraction associated to x0, any state x ∈
(−∞, xc) converges to x0 under the ODE (1.38). Therefore, we conclude that

w0(x) ≡ w0(x0) = C0 . (1.39)

Step 2. Second, near the boundary x = xc, we “zoom in” the boundary layer
by considering the change of variables

x = xc −
√
εz .

Then, we have
dw

dx
=
dw

dz

dz

dx
= − 1√

ε

dw

dz
,

d2w

dx2
=
d2w

dz2

(dz
dx

)2

=
1

ε

d2w

dz2
.

(1.40)

Moreover, note that xc is a saddle point implies dV
dx (xc) = 0. Therefore, Taylor

expansion gives

V ′(x) = V ′′(xc)(x− xc) +O(|x− xc|2) =
√
εκz +O(ε) , (1.41)

where
κ = −V ′′(xc) . (1.42)
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Substituting (1.41) and (1.40) into (1.36), we obtain

d2w

dz2
(z) + κz

dw

dz
(z) +O(

√
ε) = 0, z ∈ (0,+∞) ,

w(0) = 0 .

(1.43)

To analyze the solution to (1.43), let us consider the expansion

w(z) = w0(z) +
√
εw1(z) +O(ε) . (1.44)

Substituting (1.44) into (1.43), we obtain the equation for w0

d2w0

dz2
(z) + κz

dw0

dz
(z) = 0, z ∈ (0,+∞) ,

w0(0) = 0 .

(1.45)

Note that (1.45) can be solved by direct integration, which gives

w0(z) = C1

∫ z

0

e−
κ
2 η

2

dη , (1.46)

where C1 is a constant such that

C1 =
dw0

dz
(0). (1.47)

Step 3. Sending z → +∞ in (1.46), and using the identity for Gaussian
integral, we obtain

lim
z→+∞

w0(z) = C1

∫ ∞

0

e−
κ
2 η

2

dη = C1

√
π

2κ
. (1.48)

On the other hand, as z → +∞, the limit (1.48) should match the leading term
in the previous analysis in (1.39). Therefore, the two constants C0 and C1 are
related by

C1 = C0

√
2κ

π
. (1.49)

Step 4. To compute C0 and C1, we multiply both sides of the differential
equation in (1.36) by e−

1
εV (x) and integrate over D, which gives∫ xc

−∞

(
− dV

dx

dw

dx
+ ε

d2w

dx2

)
e−

1
εV (x)dx = −e−

K
ε

∫ xc

−∞
e−

1
εV (x)dx . (1.50)

For the left hand side of (1.50), we can derive∫ xc

−∞

(
− dV

dx

dw

dx
+ ε

d2w

dx2

)
e−

1
εV (x)dx

=ε

∫ xc

−∞

d

dx

(dw
dx

e−
1
εV (x)

)
dx

=ε
(dw
dx

e−
1
εV (x)

)∣∣∣xc

−∞

=ε
dw

dx
(xc)e

− 1
εV (xc) ,
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where we used the fact that lim
x→−∞

dw
dx (x)e

− 1
εV (x) = 0, since we have assumed

that lim
x→−∞

V (x) = +∞. Combining the above derivation with (1.40), (1.47)

and (1.49), we obtain ∫ xc

−∞

(
− dV

dx

dw

dx
+ ε

d2w

dx2

)
e−

1
εV (x)dx

=ε
dw

dx
(xc)e

− 1
εV (xc)

=−
√
ε
dw

dz
(0)e−

1
εV (xc)

=−
√
ε
(
C1 +O(

√
ε)
)
e−

1
εV (xc)

=−
√
ε
(
C0

√
2κ

π
+O(

√
ε)
)
e−

1
εV (xc) .

(1.51)

For the integral on the right hand side of (1.50), noticing that x0 is the unique lo-
cal minimal state of V (x) in (−∞, x1), applying Laplace’s method (see Lemma 1
below), we obtain∫ xc

−∞
e−

1
εV (x)dx =

√
εe−

1
εV (x0)

(√ 2π

V ′′(x0)
+ o(1)

)
. (1.52)

Substituting (1.51) and (1.52) into (1.50), we obtain

−
√
ε
(
C0

√
2κ

π
+O(

√
ε)
)
e−

1
εV (xc) = −

√
εe−

K
ε e−

1
εV (x0)

(√ 2π

V ′′(x0)
+ o(1)

)
,

(1.53)
from which we can solve (recall that κ = −V ′′(xc) in (1.42))

K = V (xc)− V (x0) , C0 =
π

|V ′′(xc)|

√
|V ′′(xc)|
V ′′(x0)

.

Therefore, from (1.35), (1.37) and (1.39), we conclude that

g(x) = e
K
ε w(x) = e

V (xc)−V (x0)
ε

( π

|V ′′(xc)|

√
|V ′′(xc)|
V ′′(x0)

+O(ε)
)
.

Lemma 1 (Laplace’s method). Assume that function f : [a, b] → R is C3

and attains its unique minimum at x = x0 ∈ (a, b). Further assume that
f ′′(x0) > 0. Then, as ε → 0, we have∫ b

a

e−
f(x)

ε dx =
√
εe−

f(x0)
ε

(√ 2π

f ′′(x0)
+ o(1)

)
.

For simplicity, we only present an informal discussion on its proof in the following
remark.
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Remark. By a change of variables x = x0 +
√
εz, we obtain∫ b

a

e−
f(x)

ε dx =
√
ε

∫ b−x0√
ε

− x0−a√
ε

e−
1
ε f(x0+

√
εz)dz .

Notice that x0 is a minimal point implies f ′(x0) = 0. Therefore, Taylor’s
expansion gives

1

ε
f(x0 +

√
εz) =

f(x0)

ε
+

f ′′(x0)

2
z2 +O(

√
εz3) ,

and ∫ b

a

e−
f(x)

ε dx =
√
ε

∫ b−x0√
ε

− x0−a√
ε

e−
1
ε f(x0+

√
εz)dz

=
√
εe−

f(x0)
ε

∫ b−x0√
ε

− x0−a√
ε

e−
f′′(x0)

2 z2+O(
√
εz3)dz

=
√
εe−

f(x0)
ε

(√ 2π

f ′′(x0)
+ o(1)

)
.
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