
Project and Exercises

Course “Mathematical strategies for complex stochastic dynamics”,

Summer 2025, FUB

June 13, 2025

1 Project

Select one of the following topics. Implement the code based on the relevant
notebooks provided in the practice course. Conduct numerical experiments and
study a few questions/issues related to the method and the numerical results.
Write a report that includes the following parts:

1. A short introduction to the topic.

2. Description of the adopted method.

3. Details of numerical experiments (e.g. dataset, neural network architec-
ture, training parameters such as learning rate and number of epochs...)
and discussions of numerical observations.

4. Conclusion (e.g. capability, complexity of the method) and outlook (e.g.
potential challenge for high-dimensional and large datasets)

A few questions are provided, but you are encouraged to consider other ques-
tions related to the method and numerical experiments that you find interesting.

To submit, please send by email the zip file containing both the
report and code.

Topic 1. Train a diffusion model on one of the provided datasets in R2.
Below are a few questions to be answered.

1. Is there a way to quantitatively evaluate the quality of the numerical result
(e.g. a number/score that measures the closeness between the generated
samples and the training dataset)?

2. Compare training results with fewer or more training epochs. How many
training epochs are required to obtain a good result?

3. Compare training results with different neural network architectures. What
will happen when the neural network is linear (i.e. no nonlinear activation)
or the sizes of layers are very small?

4. Compare training results with different choices of ηmin, ηmax.

5. Compare the training results with different batch-sizes. How does the
training (for example, computational time) depend on batch-sizes?
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Topic 2. Train a flow-matching generative model on one of the provided
datasets and study the following questions.

1. How is the quality of the numerical result?

2. Compare training results with fewer or more training epochs. How many
training epochs are required to obtain a good result?

3. Compare training results with different neural network architectures. What
will happen when the sizes of neural network layers are small or large?

4. Besides the linear interpolation Xt = (1− t)X0 + tX1, also implement the
code with a different interpolant (and change the loss objective accord-
ingly; see the lecture note), for example,

Xt =
(
1− sin(

tπ

2
)
)
X0 + sin

( tπ
2

)
X1 , (1)

Compare the results to the results obtained using linear interpolation.

5. Optionally, compare flow-matching models to diffusion models (in terms
of approaches, computational cost, quality of results).

2 Exercises

1. Consider the ODE in Rd

dx(t)

dt
=f(x(t)) , t ∈ [0, T ] ,

x(0) =x, x ∈ Rd .

(2)

Assume that x(0) is a random variable whose probability density is p0(x).
Let p(x, t) be the probability density of x(t) at time t ∈ [0, T ].

(a) Show that

d

dt
p(x(t), t) = −divf(x(t)) p(x(t), t), t ∈ [0, T ] .

(b) Show that

p(x(t), t) = p0(x)e
−

∫ t
0
(divf)(x(s))ds.

Hint: Recall that p(x, t) solves the continuity equation

∂p

∂t
+ div(fp) = 0 , ∀ t ∈ (0, T ]

p(x, 0) = p0 .

2. Prove the identity ∫ t

0

B2
sdBs =

1

3
B3

t −
∫ t

0

Bsds (3)

Hint: Apply Ito’s formula to B3
t and then use it to show that both sides

satisfy the same SDE (and have the same value zero at t = 0).
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3. Let Bt be a one-dimensional Brownian motion. Consider the SDE for
Xt = (X1

t , X
2
t ) ∈ R2: {

dX1
t = − 1

2X
1
t dt−X2

t dBt

dX2
t = − 1

2X
2
t dt+X1

t dBt

(4)

(a) Show that |Xt|2 is constant, i.e. |Xt| = |X0| for all t ≥ 0.

(b) Show that Xt = (cos(Bt), sin(Bt)) solves (4).

Hint: Apply Ito’s formula.

4. Consider the Brownian dynamics

dXt = −∇V (Xt) dt+
√

2β−1dBt , t > 0 (5)

where β > 0 is a constant.

(a) Write down the expression of the infinitesimal generator L of (5).

(b) Let π(x) = 1
Z e−βV (x) be the density of Boltzmann distribution, where

Z is a normalizing constant. Show that π is invariant under the
dynamics (5).

(c) Show that L is a self-adjoint operator with respect to the weighted
inner product ⟨g1, g2⟩π =

∫
Rd g1g2πdx.

Hint: See the lecture note.

5. Consider the Ornstein-Unlenbeck (OU) process

dXt = −κXt dt+
√
2β−1dBt , t > 0 , (6)

where κ, β > 0, and X0 is fixed.

(a) Show that

Xt = e−κtX0 +
√
2β−1

∫ t

0

e−κ(t−s)dBs, t > 0 . (7)

(b) Compute the mean and variance of Xt.

Hint: Apply Ito’s formula to eκtXt and then integrate to get (7). Use (7)
and properties of Ito’s integral (Ito isometry) to compute the mean and
variance.

6. Consider the Brownian dynamics Xt in (5). Recall that the semigroup
Tt is defined as (Ttf)(x) = E(f(Xt)|X0 = x) for a test function. Denote
Eπ(f) =

∫
Rd f(x)π(x)dx. Assume that its invariant density satisfies the

so-called Poincáre inequality. That is, there exists a positive constant
ρ > 0 such that the inequality

Eπ

[
(f(x)− Eπf)

2
]
≤ 1

ρ
Eπ|∇f(x)|2 (8)
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holds for all C1-smooth function f : Rd → R. Show that

Eπ

[(
(Ttf)(x)− Eπ(Ttf)

)2] ≤ e−
2ρt
β Eπ

[
(f(x)− Eπf)

2
]
, (9)

for any t ≥ 0.

Hint: Derive a differential inequality for the left hand side of (9), by
taking derivative and using

(a) the identity d(Ttf)
dt = LTtf ,

(b) the identity Eπ(fLg) = − 1
βEπ(∇f · ∇g) for test functions f and g,

(c) the fact that Eπ(LTtf) = 0 (which is implied by (b)),

(d) the Poincáre inequality (8).

Integrate the inequality to conclude the proof.

7. Consider the Langevin dynamics

dQt =Ptdt

dPt =−∇V (Qt) dt− γPtdt+
√
2γβ−1dBt .

(10)

Let π(q, p) = Z−1
1 e−β

(
V (q)+

|p|2
2

)
be the invariant density of (10), where

Z1 is a normalizing constant. For two test functions f, g : Rd × Rd → R,
denote by ⟨f, g⟩π the weighted scalar product with respect to π, i.e.

⟨f, g⟩π =

∫
Rd×Rd

f(q, p)g(q, p)π(q, p)dqdp. (11)

Let L∗ be the adjoint of L with respect to (11), such that

⟨Lf, g⟩π = ⟨f,L∗g⟩π , (12)

for two general test functions f, g. Let T denote the flip of momentum p.
That is, given f : Rd × Rd → R, we have (T f)(q, p) = f(q,−p).

Show that

(a) L∗ = T LT .

(b) ⟨LT f, g⟩π = ⟨f,LT g⟩π.

Hint:

(a) Write down the expression of the generator L (see lecture notes).

(b) To prove (a), derive the expression of L∗ using the definition (12).

(c) Use (a) and (12) to prove (b).

8. Let ξ : Rd → R be a C2-smooth map, which satisfies

(a) ∇ξ(x) is non-zero for all x ∈ Rd.

(b) The image of ξ is R, that is, for any z ∈ R, there exist x ∈ Rd such
that ξ(x) = z.
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Let f : Rd → R be a C2-smooth function. Define the function f̃ : R → R
as

f̃(z) =

∫
Rd

f(x)δ(ξ(x)− z)dx , ∀z ∈ R . (13)

Derive an expression for f̃ ′(z) (the derivative of f̃ with respect to z).

Hint:

(a) Compute the integral
∫
R f̃ ′(z)g(z)dz for a test function g, using in-

tegration by parts.

(b) Use the identity (the propertity of δ function; see lecture note)∫
R
f̃(z)g(z)dz =

∫
Rd

f(x)g(ξ(x))dx .

(c) Use the fact (by chain rule):

∇g(ξ(x)) = g′(ξ(x))∇ξ(x) =⇒ g′(ξ(x)) =
∇g(ξ(x)) · ∇ξ(x)

|∇ξ(x)|2
.
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