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Course Information

Schedule
Lectures:

T9/053 Seminarraum (Takustr. 9)
Wed. from 14:00-16:00
Last lecture: July 16, 2025

Practice:
T9/046 Seminarraum (Takustr. 9)
Fri. from 10:00-12:00
Last course: July 18, 2025

Note: no meetings on June 4 and 6 due to conference.
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Course Information

1 lecture notes:
https://weizhang.userpage.fu-berlin.de/teach.html

2 jupyter notebooks
https://github.com/zwpku/course-FUB-summer2025
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Course Information

Format:

Lectures: slides + black board

Practice:
analytical examples: slides + black board

numerical examples: Python, Jupyter, Pytorch
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Course Information

Tentative plan for grading:

1 Solve problems: Each week, I will provide questions/problems. You
choose one of them to solve. In total, 10 questions shall be solved.

2 a short report: I provide several topics for numerical experiment. Select
1 topics to conduct numerical experiement and write a short report:

length: 4-6 pages recommended
problem description and goal
method and algorithm
details about numerical experiment

3 optional: 5-10 min presentation of your numerical experiment
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Introduction
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ODEs

ODE in Rd

dx(t)
dt

= f (x(t)) s ∈ [0,T ] , x(0) = x , (1)

where f : Rd → Rd .

Known facts:
trajectory x(t) is C1-differentiable.
given x(0), x(t) is determinstic.
explicit Euler scheme: ∆t = T

N ,

xn+1 = xn + f (xn)∆t , n = 0,1,2, . . . .

Runge-Kutta scheme
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Stochastic processes

Markovian processes:
1 Markov chain

2 Markov jump process

3 Diffusion process: continous time and space
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SDEs

Stochastic differential equations in Rd

dx(t) = f (x(t)) dt + Σdw(t) , t ∈ [0,T ] . (2)

where f : Rd → Rd , Σ is a constant matrix, w(t) is a d-dimensional Browian
motion.

The meaning of (2):

SDE = ODE + noise
(continuous-time) limit of the scheme:

xn+1 = xn + f (xn)∆t +
√

∆tΣηn, (3)

where ηn are i.i.d. standard Gaussian random variables in Rd .
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Complex stochastic dynamics

Main application areas:
molecular dynamics
material sciences
climate

Main study approaches:
theoretical analysis
numerical computing
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Complex stochastic dynamics: Multiple time-scales

molecular dynamics:
atom vibration v.s. conformational changes
climate:
weather forcast from next hours to next days, climate changes in the
coming years
finance: stock prices
. . .
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Complex stochastic dynamics: Multiple time-scales

Consider SDE
dx(t) =f (x(t), y(t)) dt + dw1(t)

dy(t) =
1
ε

g(x(t), y(t)) dt +
1√
ε
dw2(t) ,

(4)

where ε > 0 is a small parameter.

In this case, x(t) is a slow variable, y(t) is a fast variable.

Difficulty:

In numerical simulations, step-size ∆t has to be very small, e.g. O(ε).

=⇒ large computational cost, e.g. O( T
ε ).
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Complex stochastic dynamics: Metastability

Consider the SDE

dx(t) = −∇V (x(t)) ds +
√

2εdw(t) , (5)

where V is a potential function with multiple local minima.

Difficulty: transition events are rare.

=⇒ Long-time simulation

=⇒ large computational cost.
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Complex stochastic dynamics: Metastability

Example: potential V (x) = 1
4 (x2 − 1)2.

dx(t) = −∇V (x(t)) ds +
√

2εdw(t) , (6)

Figure: left: potential. middle: ε = 0.1, right: ε = 0.05.
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Complex stochastic dynamics: High-dimensionality

dx(t) = f (x(t)) ds + Σdw(t) , t ∈ [0,T ] . (7)

Common features:
large number of particles in systems: m
high dimension: d = 3m
complicated interaction forces f .

As a result, (7) is in a high-dimensional space and f is highly complicate.
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Examples: molecular dynamics in biophysics

Figure: left: protein (myoglobine). right: MD simulation
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Common goal

Common research goal is to better understand these complex dynamics (e.g.
protein dynamics, climate, materials) by

analyzing the dynamics
building simplified surrogate model
developing efficient numerical simulation method
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Research questions

averaging system:

dx(t) =f (x(t), y(t)) dt + dw1(t)

dy(t) =
1
ε

g(x(t), y(t)) dt +
1√
ε
dw2(t) ,

(8)

Questions:
1 What is the limiting behavior when ε→ 0?
2 Can we elimenate the fast variable y(s), and obtain an effective dynamics

for the slow variable x(t)?

metastable system:

dx(t) = −∇V (x(t)) ds +
√

2εdw(t) , (9)

Questions:
1 How to characterize the transition events (jumps from one well to another)?
2 How to reduce the dimensionality and obtain equation of some observables?

17 / 21



Goal of this course

Provide both theoretical and numerical tools to study SDEs with multiple
time scales or metastabilty.
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Related topics in machine learning

stochastic gradient descent

Loss(θn) =
1
B

B∑
l=1

`(xil , θn), θn+1 = θn − r∇θLoss(θn) (10)

Autoencoder for dimensionality reduction

x1

x2

x3

x4

xd

...

...

...

z1

zm

... ... ...

y1

y2

y3

y4

yd

...

input outputencoder decoder

Diffusion models for generative modeling
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Contents

To summarize, we will discuss the following topics in this course.

1 Basic of stochastic processes (4 weeks)

Langevin dynamics, Markov chains, generators, Fokker-Planck equation,
convergence to equilibrium, Ito’s formula

2 Model reduction for stochastic dynamics (4 weeks)

averaging, collective variables, effective dynamics, Markov state modeling

3 Machine learning techniques (4 weeks)

stochastic gradient descent, autoencoders, PDE eigenvalue problems by deep
learning, diffusion models, continuous normalizing flow, flow-matching
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Questions?
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