FU course: Mathematical Strategies for Complex
Stochastic Dynamics

April-July 2025

Lecturer: Wei Zhang (ZIB)



Course Information

Schedule

Lectures:
@ T9/053 Seminarraum (Takustr. 9)
@ Wed. from 14:00-16:00
@ Last lecture: July 16, 2025

Practice:
@ T9/046 Seminarraum (Takustr. 9)
@ Fri. from 10:00-12:00
@ Last course: July 18, 2025

Note: no meetings on June 4 and 6 due to conference.
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Course Information

@ lecture notes:
https://weizhang.userpage.fu-berlin.de/teach.html

@ jupyter notebooks
https://github.com/zwpku/course-FUB-summer2025
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Course Information

Format:
@ Lectures: slides + black board

@ Practice:
e analytical examples: slides + black board

e numerical examples: Python, Jupyter, Pytorch
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Course Information

Tentative plan for grading:

@ Solve problems: Each week, | will provide questions/problems. You
choose one of them to solve. In total, 10 questions shall be solved.

@ a short report: | provide several topics for numerical experiment. Select
1 topics to conduct numerical experiement and write a short report:

length: 4-6 pages recommended

@ problem description and goal

e method and algorithm

o details about numerical experiment

@ optional: 5-10 min presentation of your numerical experiment
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Introduction
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ODEs

ODE in R¢
ax(t

at

where f: RY — RY.

)

= f(x(1))

se[0,T],

x(0) = x,
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ODEs

ODE in RY

where f: RY — RY.

Known facts:
e trajectory x(t) is C'-differentiable.
@ given x(0), x(t) is determinstic.
e explicit Euler scheme: At = £,

Xnt1 = Xp + f(x)At, n=0,1,2,....

@ Runge-Kutta scheme
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Stochastic processes

Markovian processes:
@ Markov chain

@ Markov jump process

@ Diffusion process: continous time and space

7/21



SDEs

Stochastic differential equations in RY

dx(t) = f(x(t)) dt + Tdw(t), te[0,T]. )

where f: RY — RY, ¥ is a constant matrix, w(t) is a d-dimensional Browian
motion.
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SDEs

Stochastic differential equations in RY

dx(t) = f(x(t)) dt + Tdw(t), te[0,T]. )

where f: RY — RY, ¥ is a constant matrix, w(t) is a d-dimensional Browian
motion.

The meaning of (2):

@ SDE = ODE + noise
@ (continuous-time) limit of the scheme:

Xnt1 = Xn + f(Xn) At + V ALy, (3)

where 7, are i.i.d. standard Gaussian random variables in RY.
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Complex stochastic dynamics

Main application areas:
@ molecular dynamics
@ material sciences
@ climate

Main study approaches:
@ theoretical analysis
@ numerical computing
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Complex stochastic dynamics: Multiple time-scales

@ molecular dynamics:
atom vibration v.s. conformational changes

@ climate:
weather forcast from next hours to next days, climate changes in the
coming years

@ finance: stock prices
o ...
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Complex stochastic dynamics: Multiple time-scales

Consider SDE
ax(1) =F(x(t), y(t)) dt + dw (t)
dy(t) =1 9(x(), y(B) t + -cim(0), @

where € > 0 is a small parameter.

In this case, x(t) is a slow variable, y(t) is a fast variable.
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Complex stochastic dynamics: Multiple time-scales

Consider SDE
ax(t) =f(x(1), y(t)) dt + dws (t)
(1) = gx(t) Y(1) ot + ~7-alwa(1).

where € > 0 is a small parameter.

In this case, x(t) is a slow variable, y(t) is a fast variable.
Difficulty:

In numerical simulations, step-size At has to be very small, e.g. O(e).

— large computational cost, e.qg. O({).

11/21



Complex stochastic dynamics: Metastability

Consider the SDE
dx(t) = =V V(x(t)) ds + V2edw(t),

where V is a potential function with multiple local minima.

12/21



Complex stochastic dynamics: Metastability

Consider the SDE
dx(t) = =V V(x(t)) ds + V2edw(t),

where V is a potential function with multiple local minima.

Difficulty:  transition events are rare.
— Long-time simulation

= large computational cost.
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Complex stochastic dynamics: Metastability

Example: potential V(x) = 3(x% — 1)2.

dx(t) = =V V(x(t)) ds + vV2eadw(t), (6)

00 600 800 1000 o 200 0
t

Figure: left: potential. middle: ¢ = 0.1, right: ¢ = 0.05.
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Complex stochastic dynamics: High-dimensionality

dx(t) = f(x(t)) ds + Xdw(t), te]0,T].

Common features:
@ large number of particles in systems: m
@ high dimension: d =3m
@ complicated interaction forces f.
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Complex stochastic dynamics: High-dimensionality

dx(t) = f(x(t)) ds + Xdw(t), te]0,T].

Common features:
@ large number of particles in systems: m
@ high dimension: d =3m
@ complicated interaction forces f.

As a result, (7) is in a high-dimensional space and f is highly complicate.
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Examples: molecular dynamics in biophysics

Figure: left: protein (myoglobine). right: MD simulation
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Common goal

Common research goal is to better understand these complex dynamics (e.g.
protein dynamics, climate, materials) by

@ analyzing the dynamics
@ building simplified surrogate model
@ developing efficient numerical simulation method
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Research questions

@ averaging system:
dx(t) =f(x(t), y(t)) dt + dwy(t)

dy (1) = Qx(1). ¥ (1) ot + ~7-alwe(t)
Questions:

@ What is the limiting behavior when ¢ — 0?
@ Can we elimenate the fast variable y(s), and obtain an effective dynamics
for the slow variable x(t)?

@ metastable system:
dx(t) = =V V(x(t)) ds + vV2edw(t) 9)
Questions:

@ How to characterize the transition events (jumps from one well to another)?
@ How to reduce the dimensionality and obtain equation of some observables?
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Goal of this course

Provide both theoretical and humerical tools to study SDEs with multiple
time scales or metastabilty.
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Related topics in machine learning

@ stochastic gradient descent

B
Loss(0h) = 15 S U, 0n), i1 = 0 — rVoL0s3(00) (10)
/=1

@ Autoencoder for dimensionality reduction

oder

o Diffusion models for generative modeling
Forward SDE (data — noise)
dx = £(x, t)dt + g(t)dw *)@
Tl R
sc::etunc y T o .
dx = [f(x,t) — gz(t) dt + g(t)dw @

Reverse SDE (noise — data)
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Contents

To summarize, we will discuss the following topics in this course.

@ Basic of stochastic processes (4 weeks)
Langevin dynamics, Markov chains, generators, Fokker-Planck equation,
convergence to equilibrium, Ito’s formula

@ Model reduction for stochastic dynamics (4 weeks)

averaging, collective variables, effective dynamics, Markov state modeling

@ Machine learning techniques (4 weeks)

stochastic gradient descent, autoencoders, PDE eigenvalue problems by deep
learning, diffusion models, continuous normalizing flow, flow-matching
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Questions?
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