FU course: Mathematical Strategies for Complex Stochastic Dynamics

April 30, 2025

Last week

ODEs:

$$\frac{dx(t)}{dt} = f(x(t)), \quad x(0) = x. \tag{1}$$

- C^1 smooth, deterministic, operator $(\mathcal{L}g)(x) := f(x) \cdot \nabla g(x)$. $\frac{d(g(x(t)))}{dt} = \nabla g \cdot \frac{dx(t)}{dt} = \mathcal{L}g(x(t)).$
- gradient system: $\frac{dx(t)}{dt} = -\nabla V(x(t))$ $\frac{dV(x(t))}{dt} = -|\nabla V|^2 \Longrightarrow V(x(t))$ is non-decreasing \Longrightarrow converge to local minima
- Hamiltonian system:

$$\frac{dq(t)}{dt} = \nabla_{\rho}H, \quad \frac{dp(t)}{dt} = -\nabla_{q}H. \tag{2}$$

$$\frac{dH(q(t),p(t))}{dt}=0\Longrightarrow H(q(t),p(t))$$
 is conserved.

numerical scheme: Euler, Runge-Kutta, semi-implicit Euler...

Brownian motion

Brownian motions

Definition

A Brownian motion $(B(s))_{s>0}$ in \mathbb{R}^d has the following properties:

- $Oldsymbol{0} B(0) = 0.$
- \bigcirc B(t) is almost surely continuous.
- **3** B(t) has independent increments, i.e. B(t) B(s) is independent of B(s).
- **9** $B(t) B(s) \sim \mathcal{N}(0, (t-s)I_d).$

Figure: Brownian motion

Brownian motions

The property $B(t) - B(s) \sim \mathcal{N}(0, (t-s)I_d)$ implies that:

The transition density is

$$p(x,t|y,s) = (2\pi(t-s))^{-\frac{d}{2}} e^{-\frac{|x-y|^2}{2(t-s)}}.$$
 (3)

In particular, the probability density at time t is

$$p(x,t) = (2\pi t)^{-\frac{d}{2}} e^{-\frac{|x|^2}{2t}}.$$
 (4)

Brownian motions

The property $B(t) - B(s) \sim \mathcal{N}(0, (t-s)I_d)$ implies that:

The transition density is

$$p(x,t|y,s) = (2\pi(t-s))^{-\frac{d}{2}} e^{-\frac{|x-y|^2}{2(t-s)}}.$$
 (3)

In particular, the probability density at time t is

$$p(x,t) = (2\pi t)^{-\frac{d}{2}} e^{-\frac{|x|^2}{2t}}.$$
 (4)

Proposition

The probability density p satisfies

$$\frac{\partial p}{\partial t} = \frac{1}{2} \Delta p. \tag{5}$$

Ito integration

- Let T > 0, B_s be a Brownian motion in \mathbb{R} , and $f : [0, T] \to \mathbb{R}$ be either deterministic or random. We want to define $\int_0^T f(t) dB_t$.
- For any integer N, consider a uniform partition of [0, T]:

$$0 = t_0 < t_1 < \dots < t_N = T$$
, where $t_n = nh$, $h = \frac{T}{N}$. (6)

Recall that

$$\int_0^T f(t)dt = \lim_{N \to +\infty} \sum_{n=0}^{N-1} f(t_n)(t_{n+1} - t_n).$$
 (7)

- Let T > 0, B_s be a Brownian motion in \mathbb{R} , and $f : [0, T] \to \mathbb{R}$ be either deterministic or random. We want to define $\int_0^T f(t) dB_t$.
- For any integer N, consider a uniform partition of [0, T]:

$$0 = t_0 < t_1 < \dots < t_N = T$$
, where $t_n = nh$, $h = \frac{T}{N}$. (6)

Recall that

$$\int_0^T f(t)dt = \lim_{N \to +\infty} \sum_{n=0}^{N-1} f(t_n)(t_{n+1} - t_n).$$
 (7)

Definition (Ito integration)

$$\int_{0}^{T} f(t) dB_{t} = \lim_{N \to +\infty} \sum_{n=0}^{N-1} f(t_{n}) \Delta_{n}, \text{ where } \Delta_{n} = B_{t_{n+1}} - B_{t_{n}}.$$
 (8)

Brownian increments:

$$\Delta_n = B_{t_{n+1}} - B_{t_n} \sim \mathcal{N}(0, hI_d) \quad \Longrightarrow \quad \mathbb{E}(\Delta_n | B_{t_n}) = 0, \quad \mathbb{E}(\Delta_n^2 | B_{t_n}) = h.$$

We have

$$\mathbb{E}\Big(\int_0^T f(t)dB_t\Big) = 0, \quad \mathbb{E}\Big(\int_0^T f(t)dB_t\Big)^2 = \int_0^T f^2(t)dt. \tag{9}$$

Brownian increments:

$$\Delta_n = B_{t_{n+1}} - B_{t_n} \sim \mathcal{N}(0, hI_d) \quad \Longrightarrow \quad \mathbb{E}(\Delta_n | B_{t_n}) = 0, \quad \mathbb{E}(\Delta_n^2 | B_{t_n}) = h.$$

We have

$$\mathbb{E}\Big(\int_0^T f(t)dB_t\Big) = 0, \quad \mathbb{E}\Big(\int_0^T f(t)dB_t\Big)^2 = \int_0^T f^2(t)dt. \tag{9}$$

An infinitesimal version of the second identity is

$$(dB_t)^2 = dt$$
, or $dB_t dB_s = \delta(t-s)dt$. (10)

Stochastic differential equations (SDEs)

SDEs

X_t solves the SDE

$$dX_t = f(X_t) dt + \sigma(X_t) dB_t, \quad t > 0$$
 (11)

if and only if

$$X_t = \int_0^t f(X_s) ds + \int_0^t \sigma(X_s) dB_s, \quad t > 0$$
 (12)

SDEs

X_t solves the SDE

$$dX_t = f(X_t) dt + \sigma(X_t) dB_t, \quad t > 0$$
 (11)

if and only if

$$X_t = \int_0^t f(X_s) ds + \int_0^t \sigma(X_s) dB_s, \quad t > 0$$
 (12)

• Let $\eta_n \sim \mathcal{N}(0,1)$, independent. $\sqrt{h}\eta_n$ and Δ_n have the same distribution. Euler-Maruyama scheme:

$$x_{n+1} = x_n + f(x_n)h + \sqrt{h}\sigma(x_n)\eta_n, \quad n = 0, 1, 2, \cdots.$$
 (13)

SDE (11) can be thought as the limit of (13) as $h \rightarrow 0$.

Ito's lemma

Motivation:

- Smooth function $g: \mathbb{R} \to \mathbb{R}$.
- For ODEs, we have defined $(\mathcal{L}g) := f \cdot \nabla g$, and $\frac{d(g(x(t)))}{dt} = \mathcal{L}g(x(t))$.
- Ito's lemma allows us to compute $dg(X_t)$ for SDEs.

Ito's lemma

Motivation:

- Smooth function $g: \mathbb{R} \to \mathbb{R}$.
- For ODEs, we have defined $(\mathcal{L}g) := f \cdot \nabla g$, and $\frac{d(g(x(t)))}{dt} = \mathcal{L}g(x(t))$.
- Ito's lemma allows us to compute $dg(X_t)$ for SDEs.

Lemma (Ito's lemma)

Assume that $dX_t = f(X_t) dt + \sigma(X_t) dB_t$, t > 0. Then, we have

$$dg(X_t) = \left[g'(X_t)f(X_t) + \frac{1}{2}g''(X_t)\sigma(X_t)^2\right]dt + \sigma(X_t)g'(X_t)dB_t.$$
 (14)

Ito's lemma

Motivation:

- Smooth function $g: \mathbb{R} \to \mathbb{R}$.
- For ODEs, we have defined $(\mathcal{L}g) := f \cdot \nabla g$, and $\frac{d(g(x(t)))}{dt} = \mathcal{L}g(x(t))$.
- Ito's lemma allows us to compute $dg(X_t)$ for SDEs.

Lemma (Ito's lemma)

Assume that $dX_t = f(X_t) dt + \sigma(X_t) dB_t$, t > 0. Then, we have

$$dg(X_t) = \left[g'(X_t)f(X_t) + \frac{1}{2}g''(X_t)\sigma(X_t)^2\right]dt + \sigma(X_t)g'(X_t)dB_t.$$
 (14)

Infinitesimal generator: $\mathcal{L}g = fg' + \frac{1}{2}\sigma^2g''$. Lemma 3 becomes

$$dg(X_t) = \mathcal{L}g(X_t)dt + \sigma(X_t)g'(X_t)dB_t$$
.

Intuition of Ito's lemma

- $(dB_t)^2 = dt$ \Longrightarrow dB_t is of order \sqrt{dt} .
- Hence, computing $g(X_t)$ requires to compute 2nd derivative.

Intuition of Ito's lemma

- $(dB_t)^2 = dt$ \Longrightarrow dB_t is of order \sqrt{dt} .
- Hence, computing $g(X_t)$ requires to compute 2nd derivative.

Concretely, using $dX_t = f(X_t) dt + \sigma(X_t) dB_t$, we have

$$dg(X_{t}) = g'(X_{t})dX_{t} + \frac{1}{2}g''(X_{t})(dX_{t})^{2}$$

$$= g'(X_{t})\left(f(X_{t})dt + \sigma(X_{t})dB_{t}\right) + \frac{1}{2}g''(X_{t})\sigma(X_{t})^{2}(dB_{t})^{2}$$

$$= \left(g'(X_{t})f(X_{t}) + \frac{1}{2}g''(X_{t})\sigma(X_{t})^{2}\right)dt + g'(X_{t})\sigma(X_{t})dB_{t}$$

$$= (\mathcal{L}g)(X_{t})dt + g'(X_{t})\sigma(X_{t})dB_{t}$$
(15)

Application of Ito lemma

Ito lemma imples

$$g(X_t) = \int_0^t \mathcal{L}g(X_s)ds + \int_0^t g'(X_s)\sigma(X_s)dB_s.$$
 (16)

Application of Ito lemma

Ito lemma imples

$$g(X_t) = \int_0^t \mathcal{L}g(X_s)ds + \int_0^t g'(X_s)\sigma(X_s)dB_s.$$
 (16)

Proposition

For a smooth function $g : \mathbb{R} \to \mathbb{R}$. We have

$$\mathbb{E}(g(X_t)) = \int_0^t \mathbb{E}(\mathcal{L}g(X_s)) ds, \quad \text{or} \quad \frac{d}{dt} \mathbb{E}(g(X_t)) = \mathbb{E}(\mathcal{L}g(X_t)). \tag{17}$$

Semigroup and Fokker-Planck equation

Semigroup

Definition

Define

$$(T_t g)(x) = \mathbb{E}\big[g(X(t))|X(0) = x\big], \quad \forall t \ge 0, \forall g.$$
 (18)

Proposition

We have $T_0 = id$, and $T_{t+s} = T_t \circ T_s$, for $t, s \ge 0$. Moreoever,

$$\frac{d}{dt}T_tg = \mathcal{L}T_tg. \tag{19}$$

Recall

$$\mathcal{L}g = fg' + \frac{1}{2}\sigma(t)^2g''.$$

Definition (Adjoint operator of \mathcal{L})

Define \mathcal{L}^{\top} such that

$$\int_{\mathbb{R}^d} \left[(\mathcal{L}^\top g)(x) \right] g_1(x) dx = \int_{\mathbb{R}^d} g(x) \left[\mathcal{L} g_1(x) \right] dx, \qquad (20)$$

for any two smooth functions g and g_1 .

Recall

$$\mathcal{L}g = fg' + \frac{1}{2}\sigma(t)^2g''.$$

Definition (Adjoint operator of \mathcal{L})

Define \mathcal{L}^{\top} such that

$$\int_{\mathbb{R}^d} \left[(\mathcal{L}^\top g)(x) \right] g_1(x) dx = \int_{\mathbb{R}^d} g(x) \left[\mathcal{L} g_1(x) \right] dx, \qquad (20)$$

for any two smooth functions g and g_1 .

Lemma

$$\mathcal{L}^{ op} g = -(\mathit{f} g)' + rac{1}{2} (\sigma^2 g)'$$
 .

Assume $X_s = y$. Let p(x, t) denote the probability density of X_t at time t, where $t \ge s$.

Assume $X_s = y$. Let p(x, t) denote the probability density of X_t at time t, where $t \ge s$.

Proposition

The density p(x, t) satisfies the Fokker-Planck equation

$$\begin{split} \frac{\partial p}{\partial t} &= \mathcal{L}^{\top} p, \quad t > s, \\ p(x, s) &= \delta(x - y), \end{split}$$

SDEs in \mathbb{R}^d

Generator L:

$$\mathcal{L}g = f \cdot \nabla g + \frac{1}{2} \sum_{i,j=1}^{d} (\sigma \sigma^{\top})_{ij} \frac{\partial^{2} g}{\partial x_{i} \partial x_{j}}.$$

Adjoint L[⊤]:

$$\int_{\mathbb{R}^d} \left[(\mathcal{L}^\top g)(x) \right] g_1(x) dx = \int_{\mathbb{R}^d} g(x) \left[\mathcal{L} g_1(x) \right] dx ,$$

$$\implies \mathcal{L}^\top g = -\text{div}(fg) + \frac{1}{2} \sum_{i,j=1}^d \frac{\partial^2 \left((\sigma \sigma^\top)_{ij} g \right)}{\partial x_i \partial x_j} .$$

Brownian motion

Example

Brownian motion $X_t = B_t$. The SDE is

$$dX_t = dB_t$$
.

f = 0 and $\sigma = I_d$. The generator \mathcal{L} and its adjoints are

$$\mathcal{L} = \mathcal{L}^{\top} = \frac{\Delta}{2}.$$

Therefore, Fokker-Planck equation reduces to the heat equation.