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Last week

ODEs:
dx(t)

at

=f(x(1)), x(0)=x. (1)

@ C' smooth, deterministic, operator (£g)(x) := f(x) - Vg(x).
A — vg. #O) — Lg(x(1)).

e gradient system dx(t) = —VV(x(1))
dv(d( -V V|2 = V(x(t)) is non-decreasing = converge to

local minima

@ Hamiltonian system:

da()
at

PHaDLM) — 0 — H(q(t), p(t)) is conserved.

@ numerical scheme: Euler, Runge-Kutta, semi-implicit Euler...

ap(t) _

= VpH, 2= —VH. @)

1/18



Brownian motion
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Brownian motions

A Brownian motion (B(s))s>o in RY has the following properties:

Q@ B(0) =

@ B(t) is almost surely continuous.

© B(t) has independent increments, i.e. B(t) — B(s) is independent of B(s).

Q B(t) — B(s) ~ N(0, (t - 8)ly).

Figure: Brownian motion
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Brownian motions

The property B(t) — B(s) ~ N (0, (t — s)ly) implies that:
@ The transition density is

Ix—y|2

p(x, tly,s) = (2n(t — s))~2e” 2w .

@ In particular, the probability density at time t is

X2
p(x,t) = (2rt)~fe= o .
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Brownian motions

The property B(t) — B(s) ~ N (0, (t — s)ly) implies that:
@ The transition density is

Ix—y|2

p(x.tly. s) = (2r(t —8))"Fe™ 3. (3)
@ In particular, the probability density at time t is
_g _Ix?
p(x,t) = (2rt)~ze 2 . (4)
Proposition
The probability density p satisfies
op 1
FTi §Ap. (5)
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Ito integration
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Ito integration in 1D

@ Let T > 0, Bs be a Brownian motion in R, and f : [0, T] — R be either
deterministic or random. We want to define fo (t)dB;.

@ For any integer N, consider a uniform partition of [0, T]:

T
O=fh<t<---<ty=T, where t,= nh, h:N' (6)

Recall that
T N—-1
/O f(t)at = moozftn (tsr — 1) )
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Ito integration in 1D

@ Let T > 0, Bs be a Brownian motion in R, and f : [0, T] — R be either
deterministic or random. We want to define fOT f(t)dB;.

@ For any integer N, consider a uniform partition of [0, T]:

O=th<t<---<ty=T, where &, =nh, h:%. (6)
Recall that
T N—-1
/0 f(tyot = lim ; F(t0) (bt — 1) )
Definition (Ito integration)
T N—-1
/0 f(t)aB = im n§=:0 F(tn) A, where Ap = By, — B, . (®)
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Ito integration in 1D

@ Brownian increments:

Ap= By, — B, ~N(0,hlg) = E(An|B,) =0, E(A}|B;,)

|
=

@ We have

7/18



Ito integration in 1D

@ Brownian increments:
Ap =B, — B, ~N(0,hly) = E(AnB,)=0, E(A3B,)=h.

@ We have

E(/OTf(t)dBt> —0, ]E(/O

An infinitesimal version of the second identity is

T

f(t)dBt)z - /OT (t)at. 9)

l (dB;)? = dt, or dB;dBs = 6(t — s)dt. (10) ]
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Stochastic differential equations (SDEs)
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SDEs

@ X; solves the SDE
dX; = f(Xt) dt+O'(Xt)dBt7 t>0

if and only if

t t
&:/Fug$+/d&w&,t>o
0 0

(12)
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SDEs

@ X; solves the SDE
dXy = f(Xy) dt + o(Xp)dBy, t>0 (11)

if and only if

t t
&:/Fagw+/d&w&,t>o (12)
0 0

@ Letn, ~ N(0,1), independent. v'hn, and A, have the same distribution.
Euler-Maruyama scheme:

Xnp1 = Xn + F(Xn)h+ Vho(Xa)nn, n=0,1,2,---. (13)

SDE (11) can be thought as the limit of (13) as h — 0.
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lto’'s lemma

Motivation:
@ Smooth function g : R — R.
@ For ODEs, we have defined (£g) :=f- Vg, and % = Lg(x(1)).
@ Ito’s lemma allows us to compute dg(X;) for SDEs.
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lto’'s lemma

Motivation:
@ Smooth function g : R — R.
@ For ODEs, we have defined (£g) :=f- Vg, and % = Lg(x(1)).
@ Ito’s lemma allows us to compute dg(X;) for SDEs.

Lemma (lto’s lemma)
Assume that dX; = f(X;) dt + o(X;)dB;, t > 0. Then, we have

dg(X[) = |:g/(Xt)f(Xt) aF %g//(Xt)O'(Xt)Z:I at + O'(Xt)g/(xt)dB[ o (14)
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lto’'s lemma

Motivation:
@ Smooth function g : R — R.
o For ODEs, we have defined (£g) = f- Vg, and 29X — £g(x(t)).
@ Ito’s lemma allows us to compute dg(X;) for SDEs.

Lemma (lto’s lemma)

Assume that dX; = f(X;) dt + o(X;)dB;, t > 0. Then, we have

dg(X[) = |:g/(Xt)f(Xt) aF %g“(Xr)O’(Xt)Z] at + O'(Xt)g/(xt)dB[ o (14)

Infinitesimal generator: £g = fg’ + 0?g"”. Lemma 3 becomes

dg(Xi) = Lg(X)dt + o(X)g'(X)dB: .
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Intuition of Ito’s lemma

@ (dB)>=dt =  dBis of order Vadt.
@ Hence, computing g(X;) requires to compute 2nd derivative.
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Intuition of Ito’s lemma

@ (dB))?=dt =  dBis of order Vdt.
@ Hence, computing g(X;) requires to compute 2nd derivative.

Concretely, using dX; = f(X;) dt + o(X;)dB;, we have
/ 1 /!
dg(Xt) =g'(X)dX: + 59 (Xo)(dX:)?
]
—g'(X) (f(x,)dt + o(Xt)dBt) + 59" (X)o(X)(dBy)?

= (gl(X[)f(X[) + %g”(X[)O'(X[)2> at —+ g/(Xt)O'(Xt)dBt
=(Lg)(Xp)dt + g'(Xt)o(X;)dBy
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Application of Ito lemma

Ito lemma imples

t t
a(X,) = /0 £o(Xe)ds + /O 0/ (Xe)o(Xe)dBs
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Application of Ito lemma

Ito lemma imples

t t
a(X,) = /0 £o(Xe)ds + /O 0/ (Xe)o(Xe)dBs (16)

Proposition

For a smooth function g : R — R. We have

t
B(o(X) = [ B(LgO)ds. or ZE(a(X) ~E(Cg(x). (17
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Semigroup and Fokker-Planck equation
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Semigroup

Definition
Define
(Tig)(x) = E[g(X(1))|X(0) = x|, Vt>0,vg. (18)
Proposition
We have To = id, and Ty, s = T; o T, for t, s > 0. Moreoever,
9 rg=cT, (19)
dt tg - fg'
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Fokker-Planck equation

Recall ]
Lg=1g + Ea(t)zg”.

Definition (Adjoint operator of £)

Define £ T such that

[ (€T maiax = [ alcatar, (20)
Rd Rd

for any two smooth functions g and gy.
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Fokker-Planck equation

Recall ]
Lg=1g + Ea(t)zg”.

Definition (Adjoint operator of £)

Define £ T such that

[ (€T maiax = [ alcatar, (20)
Rd Rd

for any two smooth functions g and gy.

L£Tg=—(fg) + 3(s2g)’.
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Fokker-Planck equation

Assume X; = y. Let p(x, t) denote the probability density of X; at time ¢,
where f > s.
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Fokker-Planck equation

Assume X; = y. Let p(x, t) denote the probability density of X; at time ¢,
where f > s.

Proposition
The density p(x, t) satisfies the Fokker-Planck equation

op _ .7
at - ‘C p7
p(x,8) = d(x = y),

t>s,
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SDEs in RY

@ Generator L:
1 0?9
—f. Z . Y9
Lg Vg+ 5 I;(aa )'][“)X,BX,-

@ Adjoint £T:

IAGE SO / g(x)[cg1(x)]dx,

119

— L'g=—div(fg) + > Z BX,GXI

17/18



Brownian motion

Example
Brownian motion X; = B;. The SDE is

dX; = dB;.
f =0and o = ly. The generator £ and its adjoints are

A
_ T _
L=L 5

Therefore, Fokker-Planck equation reduces to the heat equation.

18/18



