
Transition path theory

July 09, 2025

1 / 29



Reminder

1 Exercises: solve 8− 10 questions. Submission deadline: 23.07.2025

2 Course project: Select one topic to conduct numerical experiment, and
write a short report. Submission deadline: 27.07.2025

3 give a 10-15 min presentation. Date: 11.07.2025 or 18.07.2025.
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Part 1: Transition paths in the zero-temperature limit
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Brownian dynamics

1 Brownian dynamics in Rd

dXt = −∇V (Xt ) dt +
√

2εdBt , t ≥ 0 ,

where ε > 0 is a constant.

2 Invariant probability density is

π(x) =
1
Z

e−
1
ε V (x) , where Z =

∫
Rd

e−
1
ε V (x)dx .

3 Assume that V has multiple local minima.
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Example
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Wentzell-Freidlin theory and minimal energy path

1 For a subset B in path space, we have

lim
ε→0

εlnP(B) = −min
ϕ∈B

IT (ϕ) ⇐⇒ P(B) ≈ exp
(
− 1
ε

min
ϕ∈B

IT (ϕ)
)
.

2 Action functional:

IT (ϕ) =
1
4

∫ T

0

∣∣∣ϕ̇(t) +∇V (ϕ(t))
∣∣∣2 dt .

3 Minimizing action =⇒ Minimal energy path (MEP):

ϕ(T1) = a, ϕ(T ∗) = c, ϕ(T2) = b,

ϕ̇(t) =

{
∇V (ϕ(t)), T1 < t < T ∗ ,
−∇V (ϕ(t)), T ∗ < t < T2 .

Lower bound of action is achieved as T1 → −∞,T2 → +∞.
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Example of MEP

At low temperature, transition paths concentrate on a single path (MEP).
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Part 2: Committor
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Brownian dynamics

1 Dynamics:
dXt = −∇V (Xt ) dt +

√
2β−1dBt , t ≥ 0 .

2 Invariant density:

π(x) =
1
Z

e−βV (x) , where Z =

∫
Rd

e−βV (x)dx .

3 Infinitesimal generator:

Lf = −∇V · ∇f +
1
β

∆f .
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Sets A and B

Two disjoint closed subsets A,B ⊂ Rd , such that (A ∪ B)c 6= ∅.

Goal: to study the transition of Xt from A to B.
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Hitting time and committor

1 First hitting time:

τA,x = inf
{

t ≥ 0
∣∣Xt ∈ A, starting from X0 = x

}
,

τB,x = inf
{

t ≥ 0
∣∣Xt ∈ B, starting from X0 = x

}
.

2 Committor: the probability that Xt will hit B before it hits A.

Definition (Forward committor)

q(x) = P(τB,x < τA,x ) , x ∈ Rd .
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Illustration
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Committor equation

Proposition
The committor q(x) = P(τB,x < τA,x ) solves

Lq = 0, on (A ∪ B)c

q|∂A = 0, q|∂B = 1 ,

where L = −∇V · ∇+ 1
β∆ is the generator.

Proof.
1 Applying Ito’s formula and taking expectation

=⇒ E
(
q(Xt )

∣∣X0 = x
)

= q(x) +

∫ t

0
E
(
Lq(Xs)

∣∣∣X0 = x
)

ds .

2 show E
(
q(Xt )

∣∣X0 = x
)

= q(x) =⇒
∫ t

0 E
(
Lq(Xs)

∣∣∣X0 = x
)

ds = 0.
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Variational formulation of committor

Proposition
For any C1-smooth function f : (A ∪ B)c → R, which satisfies f |∂A = 0 and
f |∂B = 1, we have

1
β

∫
(A∪B)c

|∇f (x)|2π(x)dx

=
1
β

∫
(A∪B)c

|∇q(x)|2π(x)dx +
1
β

∫
(A∪B)c

|∇(f − q)(x)|2π(x)dx .

Therefore, q solves the minimization problem

min
f

(1
β

∫
(A∪B)c

|∇f (x)|2π(x)dx
)

among all C1-smooth f : (A ∪ B)c → R such that f |∂A = 0 and f |∂B = 1.
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Part 3: Transition path theory (TPT)
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Random times

1 Consider an infinitely long trajectory (Xt )t∈[0,+∞) of the process.

2 Hitting times of A and B:

τ
(1)
A = inf

{
t > 0

∣∣Xt ∈ A
}
,

and, for k ≥ 1,
τ
(k)
B = inf

{
t
∣∣ t > τ

(k)
A ,Xt ∈ B

}
,

τ
(k+1)
A = inf

{
t
∣∣ t > τ

(k)
B ,Xt ∈ A

}
.

3

σ
(k)
A = sup

{
t | τ (k)A < t < τ

(k)
B , Xt ∈ A

}
, k ≥ 1 .
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Reactive segments

Trajectory segment that came from A and goes to B without returning to A.

1 time intervals of reactive segments:

[σ
(1)
A , τ

(1)
B ], [σ

(2)
A , τ

(2)
B ], . . . , [σ

(k)
A , τ

(k)
B ], . . . .

2 [t1, t2] corresponds to a reactive segment, if and only if

Xt1 ∈ A, Xt2 ∈ B, and Xt ∈ (A ∪ B)c , ∀ t1 < t < t2 .
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Illustration
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Reactive segments

Time intervals of reactive segments:

[σ
(1)
A , τ

(1)
B ], [σ

(2)
A , τ

(2)
B ], . . . , [σ

(k)
A , τ

(k)
B ], . . . .

1 MT : the total number of reactive segments that occur within time [0,T ].
2 MT is the maximal integer k such that τ (k)B ≤ T .
3 Average length of reactive segments:

Definition (Mean reaction time)

tR
AB = lim

T→+∞

∑MT
k=1(τ

(k)
B − σ(k)

A )

MT
.
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Backward committor

The probability that the process Xt came from A rather than B.

Definition (Backward committor)

q−(x) = P
(
t ∈ [τ

(k)
A , τ

(k)
B ), for some k ≥ 1

∣∣ Xt = x
)
.

1 q− is the forward committor for the time-reversal of Xt from B to A.
2 For Brownian dynamics, q−(x) = 1− q(x).
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Reactive density

The density of being at x conditioned on that it belongs to a reactive
segment.

1 πR(x) = Z−1
AB π(x)q−(x)q(x).

2 normalizing constant:

ZAB =

∫
(A∪B)c

π(x)q−(x)q(x)dx = lim
T→+∞

MT∑
k=1

(τ
(k)
B − σ(k)

A )

T
.

3 Brownian dynamics:
q− = 1− q =⇒ πR(x) = Z−1

AB π(x)(1− q(x))q(x).
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Transition rate

Definition
The transition rate from A to B is defined as

kAB = lim
T→+∞

MT

T
,

where MT is the total number of reactive segments within time [0,T ].

Lemma
kAB = kBA.
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Transition rate and mean reaction time

Recall:
1 kAB = limT→+∞

MT
T .

2 mean reaction time: tR
AB = limT→+∞

∑MT
k=1(τ

(k)
B −σ

(k)
A )

MT
.

3 normalizing constant:

ZAB =
∫
(A∪B)c π(x)q−(x)q(x)dx = limT→+∞

MT∑
k=1

(τ
(k)
B −σ

(k)
A )

T .

Lemma

kAB =
ZAB

tR
AB

.

Proof.

kAB = lim
T→+∞

MT

T

= lim
T→+∞

MT∑MT
k=1(τ

(k)
B − σ(k)

A )
× lim

T→+∞

∑MT
k=1(τ

(k)
B − σ(k)

A )

T
=

ZAB

tR
AB

.
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Transition rate and committor

Committor: q(x) = P(τB,x < τA,x ).

Proposition
For Brownian dynamics, we have

kAB =
1
β

∫
(A∪B)c

|∇q(x)|2π(x)dx = min
f

(1
β

∫
(A∪B)c

|∇f (x)|2π(x)dx
)

among all C1-smooth f : (A ∪ B)c → R such that f |∂A = 0 and f |∂B = 1.

24 / 29



Transition rate and committor

Committor: q(x) = P(τB,x < τA,x ).

Proposition
For Brownian dynamics, we have

kAB =
1
β

∫
(A∪B)c

|∇q(x)|2π(x)dx = min
f

(1
β

∫
(A∪B)c

|∇f (x)|2π(x)dx
)

among all C1-smooth f : (A ∪ B)c → R such that f |∂A = 0 and f |∂B = 1.

24 / 29



Transition rate and committor

Committor: q(x) = P(τB,x < τA,x ).

Proposition
For Brownian dynamics, we have

kAB =
1
β

∫
(A∪B)c

|∇q(x)|2π(x)dx

= min
f

(1
β

∫
(A∪B)c

|∇f (x)|2π(x)dx
)

among all C1-smooth f : (A ∪ B)c → R such that f |∂A = 0 and f |∂B = 1.

24 / 29



Transition rate and committor

Committor: q(x) = P(τB,x < τA,x ).

Proposition
For Brownian dynamics, we have

kAB =
1
β

∫
(A∪B)c

|∇q(x)|2π(x)dx = min
f

(1
β

∫
(A∪B)c

|∇f (x)|2π(x)dx
)

among all C1-smooth f : (A ∪ B)c → R such that f |∂A = 0 and f |∂B = 1.

24 / 29



Loss function for learning committor

kAB =
1
β

∫
(A∪B)c

|∇q(x)|2π(x)dx = min
f

(1
β

∫
(A∪B)c

|∇f (x)|2π(x)dx
)
,

where f |∂A = 0 and f |∂B = 1.

1 States X1,X2, . . . ,XN are sampled from a long trajectory.
2 Represent q : Rd → [0,1] by neural networks.
3 Loss function = objective + two penalty terms for boundary conditions.

Loss(q) =
1
βN

N∑
n=1

|∇q(Xn)|21(A∪B)c (Xn)

+
λ1

N

N∑
n=1

(
|q(Xn)|21A(Xn)

)
+
λ2

N

N∑
n=1

(
|q(Xn)− 1|21B(Xn)

)
.

where λ1, λ2 > 0 are tunable parameters.

25 / 29



Loss function for learning committor

kAB =
1
β

∫
(A∪B)c

|∇q(x)|2π(x)dx = min
f

(1
β

∫
(A∪B)c

|∇f (x)|2π(x)dx
)
,

where f |∂A = 0 and f |∂B = 1.

1 States X1,X2, . . . ,XN are sampled from a long trajectory.
2 Represent q : Rd → [0,1] by neural networks.

3 Loss function = objective + two penalty terms for boundary conditions.

Loss(q) =
1
βN

N∑
n=1

|∇q(Xn)|21(A∪B)c (Xn)

+
λ1

N

N∑
n=1

(
|q(Xn)|21A(Xn)

)
+
λ2

N

N∑
n=1

(
|q(Xn)− 1|21B(Xn)

)
.

where λ1, λ2 > 0 are tunable parameters.

25 / 29



Loss function for learning committor

kAB =
1
β

∫
(A∪B)c

|∇q(x)|2π(x)dx = min
f

(1
β

∫
(A∪B)c

|∇f (x)|2π(x)dx
)
,

where f |∂A = 0 and f |∂B = 1.

1 States X1,X2, . . . ,XN are sampled from a long trajectory.
2 Represent q : Rd → [0,1] by neural networks.
3 Loss function = objective + two penalty terms for boundary conditions.

Loss(q) =
1
βN

N∑
n=1

|∇q(Xn)|21(A∪B)c (Xn)

+
λ1

N

N∑
n=1

(
|q(Xn)|21A(Xn)

)
+
λ2

N

N∑
n=1

(
|q(Xn)− 1|21B(Xn)

)
.

where λ1, λ2 > 0 are tunable parameters.

25 / 29



Loss function for learning committor

kAB =
1
β

∫
(A∪B)c

|∇q(x)|2π(x)dx = min
f

(1
β

∫
(A∪B)c

|∇f (x)|2π(x)dx
)
,

where f |∂A = 0 and f |∂B = 1.

1 States X1,X2, . . . ,XN are sampled from a long trajectory.
2 Represent q : Rd → [0,1] by neural networks.
3 Loss function = objective + two penalty terms for boundary conditions.

Loss(q) =
1
βN

N∑
n=1

|∇q(Xn)|21(A∪B)c (Xn)

+
λ1

N

N∑
n=1

(
|q(Xn)|21A(Xn)

)
+
λ2

N

N∑
n=1

(
|q(Xn)− 1|21B(Xn)

)
.

where λ1, λ2 > 0 are tunable parameters.

25 / 29



Part 4: Committor for Markov chains
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Markov chains

1 State space: D = {1,2, . . . ,m}.
2 Probability transition matrix: P ∈ Rm×m, where Pij is the probability of

jumping to j when the current state is i .
3 Two disjoint subsets A,B ⊂ D.
4 Committor q is an m-dimensional vector.

Proposition
The committor q solves

∑m
j=1 Pijqj = qi , i ∈ (A ∪ B)c ,

qi = 0, i ∈ A ,
qi = 1, i ∈ B .
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